Object‑Oriented Analysis

Requirements analysis and domain analysis precede design

· So far we’ve looked at requirements analysis—understanding what the customer wants
· Domain analysis understands the customer’s problem—by identifying the classes comprising a problem domain.
· Design explores their contents, from outside in

· What’s the difference between traditional or structured analysis and OO analysis?

· Result of OO analysis is a representation of the classes of a problem domain (not functions)
Identifying classes is category‑formation

· Objects simulate some slice of the world which a computer system models

· Objects are a natural construct for simulation

· Classes of objects are a natural way to organize classes

· Infants learn to recognize objects and how to categorize them in their first few months

· A key insight of the child psychologist Piaget; cognitive scientists have done further work

· Adults rely on categorization to understand the world around them

· We create new categories all the time, for example, new makes of cars

· A problem with categories, however, is that they can be fuzzy and hard to define precisely

· Natural kinds: how do you define an elephant? a game?

· Prototypes: people see how close objects match a prototypical member of a category

Why is the fuzziness of natural kinds a problem for OOSE?
· It's hard to be precise about defining categories

· That's why we need a methodology for OOSE

· Some categories are directly observable in requirements

· Others are more abstract, implicit or arising from implementation needs

· Candidate classes include:

· Tangible things referred to by common nouns in requirements specification

or application domain (i.e., cookie, factory, triangle)

· Events with associated information (i.e., flight, game).

· Abstract data stores (i.e., buffer, tree, hash table)

· External interface ports (i.e., terminal, printer, window, menu)

· Complex processes or operations (i.e., sort, edit command)

Note: verbs can also be classes! Especially processes than store state information.
One might think of a scanner as an operation on tokens of class STRING

But a scanner's behavior probably deserves its own abstraction

As a subclass of STRING?

Can anything be a class? What isn't a class?

· Indeed, category‑formation is a fundamental human activity

· But there are practical limits: classes should have content, storing state information
· Simple operations (e.g., QUIT)

· Proper nouns (these are instances of classes, not classes)

· Classes with just one or two routines (probably not worth classifying)

· Redundant classes (merge synonyms, reuse classes in libraries)

Again: develop a glossary of terms—Why would this be especially helpful to OO analysis?
· Brief dictionary‑like definitions denoting how the term is used in domain

· Defining terms explicates the domain knowledge that you are modeling

· Terms can help with the discovery of classes and their structure

· Maintain glossary files throughout development, finally as documentation
Responsibility-Driven Design

(See multimedia from The Universal Machine on CRC cards)
Developed by Beck and Cunningham at Tektronix, see http://c2.com/doc/oopsla89/paper.html
· This is the same Beck that later wrote the book pioneering Extreme Programming.

[image: image1.wmf]
· CRC cards are now part of XP.

· Fowler introduces CRC and end of chapter 4 (3rdedition)

Key idea: objects have responsibilities, as if they were simple agents (or actors in scenarios)

· Anthropomorphism of class responsibilities gets away from thinking about classes as just data holders; “object think” focuses on their active behaviors
· Each object is responsible for specific actions ‑‑ client can expect predictable behaviors
· Responsibility also implies independence: to trust an object to behave as expected is to rely upon its autonomy and modularity
· Harder to trust objects easily caught up in dependencies caused by global variables and side effects.

CRC (Class Responsibility Collaborator) cards are "low tech": ordinary index cards

Each card represents a class of objects. Each card has three components:

Class Name creates the vocabulary of our analysis

· Use nouns as class names, so you begin to think of them as simple agents.

Even classes that you might think of verbs or actions can be made into nouns;

e.g., “reading a card” becomes CardReader, a class of object (agent) that manages bank cards.

· Use pronounceable names. If you cannot read aloud, it is not a good name.

· Use capitalization (or underscores) to initialize class names and to demarcate multi-word names, such as CardReader rather than CARDREADER or card_reader. We feel that this convention is easier to read and to type.

· Avoid obscure, ambiguous abbreviations: e.g., is TermProcess something that terminates or something that runs on a terminal?

· Try not to use digits within a name--better for instances than classes of objects.

Responsibilities section describes a class’s behaviors ‑‑ describe what is to be done, not how!

· Use short verb phrases, e.g.: “reads card” or “look up words”

· Constraints of an index card are a good measure of appropriate complexity:

if you cannot fit enough tasks on a card, maybe you need to divide tasks between classes?

The Collaborators section list important suppliers and possibly clients of a class
· Why are classes that supply services more important here?

· Because suppliers are necessary for the description of responsibilities

As you write down responsibilities for a class, add any suppliers needed for them

· For example “read dictionary” obviously implies that a “dictionary” as a collaborator

Developing CRC cards is first a process of discovering classes and their responsibilities

People naturally cut up the world in terms of categories of objects

In object‑oriented analysis, one discovers new categories relevant to a problem domain

Designing for responsibility involves simulation ‑‑ objects model a world interacting behaviors

An analyst can prototype a system by running a simulation of objects and their behaviors

Once you’ve developed a set of CRC cards, you're ready to run simulations, or

or structured walkthrough scenarios --

Playing “what if” lets you simulate scenarios that illustrated expected use of a system

let each person be responsible for simulating one or more classes

now you can “execute” a scenario by having each object, run at the right time

Start a simulation with the construction of an object of a class,

then run one of its behaviors (a responsibility of that class)

This behavior may in turn pass control to some collaborator ‑‑ another class

Simulation becomes visible as an exchange of behavior and control from one card to another

You may discover missing or incompletely described responsibilities
IMO, it really should be called responsibility-driven analysis, rather than design.

· Why? When is activity most useful?

See Coad & Nicola handout, (pp. 44-45): Notice the use of first person scenarios

Coad & Nicola call this the "I'm alive principle": Objects can be better understood by thinking about them and talking about them in the first person--"I know my own ____ and I can ___ myself."

· Similarly, Kent Beck talks about the need for anthropomorphism in responsibility-driven design

· What goes in the blanks? (attributes and behaviors)

· Why is putting these scenarios in the first person a good idea?

· How is this similar to responsibility-driven design?
BTW, Coad & Nicola (on reserve) spice up their text with a lot of these common sense principles

· Appendix C, starting on p. 549, lists all the principles found in this book
· I’ll read a few: you reflect them back to me in your words and comment

Class diagrams

(handout from Coad & Yourdon, p. 44-45,
see Fowler: p. 56 in 2nd edition, 36 in 3rd edition: http://www.cse.lehigh.edu/~glennb/oose/figs/class4-1.jpg)

Meyer: circles represent classes; unlabeled lines connecting classes represent relations

Coad: boxes represent classes; connecting lines have gate-like markings on them

UML: boxes represent classes; lines are associations, to which more information may be added

· Heuristic: don't put labels on the relations yet at first

Semantics of relations tends to be vague

E.g., "is a" can mean SUBTYPE ("a square is a polygon")

or INSTANCE‑OF ("George is a square")

or IDENTICAL‑TO ("The morning star is the evening star")

or PROPERTY‑OF ("A circle is round")

or ROLE‑OF ("George is President")

or MADE‑OF ("My house is brick")

or simply EXISTS ("to be or not to be").

(In many languages, there is no "is" at all.)

· Let the meaning of relations emerge from what they relate

· Vagueness is natural: start off vague, get more specific gradually

· UML supports this heuristic by starting with simple undirected lines (associations)

· Fowler advocates starting with conceptual perspective, ignoring implementation

Later, add detail to your relationship structures

· OOA typically distinguishes two relations: is‑a and has‑a
· Meyer calls these inheritance and client/supplier
· Coad and Yourdon call these generalization/specialization and whole/part
· UML calls these generalization and association or aggregation or composition

· Implemented in C++ and Java by inheritance and data members

Generalizations extract commonality among specializations:

· Meyer uses double‑line; Coad/Yourdon use lines bisected by semi‑circle; UML uses arrow

· Generalization drawn above specializations in a hierarchy or lattice

· Examples on pp. 87‑88: Aircraft hierarchy, Person lattice

Client-supplier/association/whole‑part relations are typically part or members of a class

· Meyer and UML use single line, Coad & Yourdon use line bisected by triangle

· Coad & Yourdon and UML add numbers at connection ends to show multiplicity
· E.g., Manager -1------ * -> Employee (1 to many relation; 0 to many, 1 to 1 also common)

· This notation originates in Extended Entity‑Relation models (EER)

· Lines connecting relations and classes indicate functionality, e.g.:

1:1 ‑‑ MANAGER <‑‑1‑‑ HEAD_OF ‑‑1‑‑> DEPARTMENT

1:N ‑‑ MANAGER <‑‑1‑‑ SUPERVISES ‑‑N‑‑> EMPLOYEE

N:M ‑‑ EMPLOYEE <‑‑N‑‑ ASSIGNED_TO ‑‑M‑‑> PROJECT

· Note that these EER labels the relations themselves (more than just 2 relations!)

· Similarly, UML lets you put a role name at one end of an association

E.g., Manager ----------- sales rep -> Employee (Employee's role is sales rep)

More notation (for analysis or design?)

Coad, Yourdon & Nicola, describe five activities of OOA (see handout)

1) Class‑&‑object ‑‑ describing problem domain in terms of classes of objects

2) Structure ‑‑ describing relationships between classes

3) Subject ‑‑ organizing classes into clusters (UML packages)

4) Attributes ‑‑ describing data held by objects

5) Services ‑‑ describing behaviors that objects can perform

Which of these five activities are analysis and which are design? What do you think?

1) Classes represented by boxes, with class name in the top section

· Extra gray box surrounding a class denotes that it is a concrete class, otherwise it's abstract

· An abstract class has one or more operations that must be implemented by subclasses

· What does this notation tell you about class Count?

· UML represents an abstract class by italicizing the class name or adding the label {abstract}

2) Structure, represented by lines connecting classes

· In Coad notation, semicircle means gen/spec (e.g., Count generalizes IntegerCount)

· triangle represents whole-part (e.g., Button is part of CountViewContainer)

· thin black line represents object association (e.g., DisplayBox holds 1 Count)

· Thick line represents message scenario

(e.g., Count sends a message "A1" to DisplayBox: display my value)

· In UML, simple line is an association (with notation for multiplicity, role names, constraints)

· See Fowler, ch 5 (p. 68) for more details: e.g., {ordered} is a representation constraint

· http://www.cse.lehigh.edu/~glennb/oose/figs/agg6-6.jpg, agg6-7

· Arrow denotes navigability (e.g., Polygon and Circle refer to Point but not vice versa)

· A black-filled diamond denotes a composition (a part, unique to this whole--see p. 86)

· A white-empty diamond denotes an aggregation (a part, but not unique to this whole)

· E.g., A Point may appear in only one Polygon or Circle but a Style could appear in both

3) Subject represented by larger gray boxes containing classes

· E.g., one box is HIC (human interaction component) and second is PDC (problem domain)

· UML has packages, denoted by box with smaller box on top, in separate diagrams

· Note that this is decomposition (breaking a problem down) but not functional decomposition

· Provide larger granularity for design and implementation, prior to integration

· Seems to me that subject/package design is a design rather than an analysis activity

4) Attributes (properties, fields) and 5) services (behaviors, methods, UML operations)

· Coad & Yourdon and UML have similar structure within classes

· Attributes (in middle section) could be represented as associations or whole/part relations

· Typically, attributes are simple types and single-valued

· UML lets you include information about default values and visibility (+,-,#),

(but I recommend you hold off on these details until design stage)

· Services or URL operations (at bottom section) represent methods or procedures

· Again, UML has a bit more notation, for information about default values and visibility

· E.g., + balanceOn(date:Date): Money

· Again, I recommend you hold off on these details until design

Modeling dynamic behaviors with sequence and collaboration diagrams

(See Fowler, chapter 5)

Class diagrams describe static relationships between classes,

· but what about modeling dynamic behavior?

· Interaction diagrams model how groups of object collaborate in some behavior

· Typically, an interaction diagram captures the behavior of a single use case

Example use case (http://www.cse.lehigh.edu/~glennb/oose/figs/UseCaseOrderEntry.htm):

· An Order Entry window sends a “prepare” message to an Order

· Order sends “prepare” to each Order Line on the Order

· Each Order Line checks the given Stock Item: if true, remove Stock Item and deliver

· If Stock Item falls below reorder level, then Stock Item requests reorder

Sequence diagram (http://www.cse.lehigh.edu/~glennb/oose/figs/seq5-1.jpg):

· Vertical line is called an object’s lifeline, representing an object’s life during interaction

· Object deletion denoted by X, ending a lifeline

· Horizontal arrow is a message between two objects

· Order of messages sequences top to bottom

· Messages labeled with message name, optionally arguments and control information

· Control information, in brackets, may express conditions, such as [hasStock], or iteration

· Returns (dashed lines) are optional; use them to add clarity

· Sequence diagrams can also represent concurrent processes:

· Figure 5-3 (http://www.cse.lehigh.edu/~glennb/oose/figs/seq5-3.jpg)

· UML 1 models asynchronous messages as horizontal lines with half arrow heads

· UML 2 makes this distinction by not filling an arrowhead

· Fowler prefers older notation. Why? Which do you prefer?

· After setting up Transaction Coordinator, invoke concurrent Transaction Checkers

· If a check fails, kill all the Transaction Checker processes

· Note use of comments in margin – When is this a good idea? for documentary purposes

Collaboration diagram is a second way to model interactions of objects

· http://www.cse.lehigh.edu/~glennb/oose/figs/collab5-4.jpg
· Objects are rectangular icons, e.g., Order Entry Window, Order, etc.

· Messages are arrows between icons, e.g., prepare()

· Numbers on messages indicate sequence; also spatial layout helps show flow

· Which do you prefer: sequence or collaboration diagrams?

· Fowler now admits he doesn’t use collaboration diagrams, demoting them to ch 15

· Interaction diagrams show flow clearly, but are awkward when modeling alternatives

· UML notation for control logic has changed in UML 2, but Fowler isn’t impressed

Fowler recommends using CRC cards to begin modeling scenarios

· Then document with UML sequence (or interaction) diagrams

· Use sequence diagrams to show collaborations among many objects

· Use state diagrams to show the behavior of a single object across many use cases

1

