Object-Oriented DesignPRIVATE

Goal of OO analysis is to describe a system as a set of classes and their relationships

Emphasis is on what the objects and relationships are

Output of analysis is use cases, capturing requirements,

class diagrams, modeling the problem domain, and

CRC cards and/or sequence diagrams, modeling dynamic behavior of a system

Goal of OO design is to flesh out the class diagrams and interface specifications

· OO approach promotes continuity of methodology and tools from OOA to OOD to OOP

· Coad & Nicola call this "the continuum of representation principle: use a single

underlying representation, from problem domain to OOA to OOD to OOP,"

i.e., class diagrams

· Design step reworks and adds detail to class diagrams, e.g., access control (public/private)

· ADT design describes the semantics of classes in more detail (design by contract)

· Design also looks for opportunities for reuse and begins to address performance issues

So the goal of your OO design documents will be to:

1. Revisit your OOA documents and flesh them out--we'll discuss how in a moment

2. Refine description of system behavior & structure (using UML state, package diagrams)

3. Then add ADT semantics -- use my Fruit example as a starting point for notation

I include inheritance information in the TYPE section

but be creative if you find you need to create more notation

just try to invent notation that is logical and language-independent

e.g., how to describe access control? (public, private, protected)

Coad & Yourdon (and Nicola) include four activities in OO design:

 1) Problem domain: reuse and performance considerations

Design for reuse looks for opportunities to factor out common code in abstract classes

Design for performance consider performance tradeoffs: efficiency vs. effectiveness

Note that OOA focuses primarily on the describing problem domain itself

OOD reexamines the domain in terms of how issues

 2) Human interaction: encapsulates user interface considerations

Separation of concerns principle: Keep problem domain classes distinct from human

 interaction classes (and also task and data management classes).

Why is this a good idea? To facilitate software reuse and change, by making it easier

 to add or change classes in one component without severely affecting others

Loose coupling means that HIC just knows how to present data, not how to compute it

Smalltalk Model-View-Controller framework: model is the problem domain

view is the human interface (windows that view the problem domain objects)

controller is the mouse or keyboard input, also interacting with P.D. objects

C++ Interviews has two part framework:

subject is the problem domain

views are the UI

Discuss figure 1-17 on p. 45 of Coad & Nicola

 3) Task management: multi‑tasking and concurrency considerations

 4) Data management: storage and retrieval of external data

Reworking the class‑relations diagram
Add any new relations implied by the class interface declarations

· Heuristic: look for inverse operations (e.g., undo/redo, getData/setData)

· Heuristic: factor complex behaviors out as classes themselves

· Heuristic: if the only difference different specialization classes is presentation of data,

use a service

e.g., Count example: should we derive HexCount, BinaryCount, OctCount?

instead, add a service, asBase, to present data in different bases

Distinguish between client and inheritance relations

· Most obvious client relations are implied by parameter and variable declarations

· Most obvious candidates for inheritance is conceptual SUBTYPE relation

· Meyer: the "type perspective": an heir specializes its parent

· Vs. the "module perspective": a pragmatic or implementation view

· Inheritance also can be sued to extend services of a client

· These two perspective may overlap: CLOSED_FIGURE is a subtype of FIGURE

CLOSED_FIGURE also extends FIGURE (adding routines for perimiter, area)

Other relations are harder to map into relations supported by OOPLs

· Heuristic: model HAS-A relations (PART‑OF, MADE‑OF, CONSISTS‑OF,

POSSESSION‑OF, PROPERTY‑OF, or ROLE‑OF) relations as clients

· Misuse of multiple inheritance is when a derived class is "composed of" several parent classes

· I.e., class AIRPLANE has parents WINGS, ENGINE, TAIL)

· But the behavior of AIRPLANE is not just the sum of its parts

· Stroustrup's heuristic: "can it have two?" then it's a containment, or has-a relation

· Heuristic: use inheritance to extend existing classes

· For example, COMPLEX_MATRIX is an adaptation of ARRAY or OrdCltn

· Avoid adapting parents for the sake of their heirs (open‑closed principle)

· Heuristic: generalize common behaviors in abstract classes

· For example, MOUSE, TABLET and KEYBOARD can all inherit behavior from

 an abstract class, INPUT_DEVICE.

· Heuristic: use multiple inheritance for compound classes

· E.g., TEACHING_ASSISTANT can inherit from both TEACHER and STUDENT

· E.g., WINDOW as a compound of RECTANGLE (for graphical behaviors)

 and TREE (for hierarchical behaviors)

Redesign for generality: decompose overly complex classes or operations

· Heuristic: classes should have no more than about 40 members

· Classes with about 20 members declarations are typical

· Operations/data should all be semantically related to the class

ADTs as active state machines
Consider whether a class should keep track of its own internal state

Example from Bertrand Meyer: design of LINKED_LIST class

First‑cut: define two classes: LINKED_LIST and LINKABLE, both generic

 class LINKABLE[T] ‑‑linkable cells

 feature

 value:T;

 right: LINKABLE[T]; ‑‑next cell

 ‑‑routines to Create, change_value, change_right

 end;

 class LINKED_LIST[T]

 feature

 first: LINKABLE[T];

 value(i:INTEGER):T is ‑‑value of i‑th element

 ‑‑loop until it reaches the @i[i]th element

 insert(i:INTEGER; val:T);

 ‑‑loop until it reaches ith element, then insert val

 delete(i:INTEGER);

 ‑‑loop until it reaches ith element, then delete it

Problems with first‑cut:

· Getting the loops right is tricky (loops are error‑prone)

· Redundancy: the same loop logic recurs in all these routines

· Reuse leads to inefficiency: suppose I want a routine search
· Find an element then replace it: I'll do the loop twice!

· Need some way to keep track of the position I found!

· Could return the LINKABLE cell found, but this would ruin encapsulation

A better version: view LINKED_LIST as a machine with an internal state
· Internal state is information stored as attributes of an object

· What should we store as part of the state of LINKED_LIST?
· Current position in the list, or cursor
· Search(item) routine moves the cursor until it finds item
· insert and delete operate on the element pointed at by cursor
· How does this simplify the code of insert, delete, etc.?
· How does this improve the efficiency of compound operations?
· Client has a new view of LINKED_LIST objects:

 l.search(item); ‑‑find item in l

 if not offright then delete end; ‑‑delete LINKABLE at cursor

‑‑Other routines move cursor:

 l.back; l.forth

Key idea for OOD: data structures can be active
· Active structures have internal states, which can change

· Routines manipulate the object's state

What other classes could be designed this way? files, random number generators, scanners, ...

Class as state machine view may not be obvious at early juncture! ‑‑a good reason for redesign!

Case Study: Full‑Screen Entry Systems (overheads)

Straightforward data processing application: menu‑driven data entry

· Each menu comes with a panel of information & lets user choose next action

· This panel show interaction during a airline reservation session:

· Enquiry on flights, information & possible new states

Meyer shows how several different ways to solve this problem:

· goto flow (50's), functional decomposition (70's) & OO design (90's?)

· OO design adds reusability & extensibility

Uses State‑Transition Graph to describe overall structure of a session

· Nodes represent states: here, each state is a menu panel
· E.g., we saw Enquiry on Flights panel

· Transitions, labeled by integers, represent possible user's choices
· Enquiry on Flights panel offers 4 choices: exit, help, further inquiry

· Why is State‑Transition Graph notation a good idea for this problem?
· Good way to model applications that involve state changes

· State-transition graphs are a very good way to represent any event-driven system

· Also a very good way to represent dynamic behavior--used in many OOD notations

· FS machines in OOther and State diagrams in UML serve this purpose

· Recommended for designing how user interface will interact with problem domain

First cut at solving the: a glorified "GOTO" approach

· First display the panel and get the user's choice

· Then choose a choice using a case or switch statement

· What do Cox and Meyer et al. think is wrong with this approach?
· Dialogue structure is wired into the program structure

· Suppose you want to add a state: you need to change all the CASEs

· Essentially the CASE is glorified GOTO: system is a spaghetti bowl

· A 60's debate: eliminate GOTOs

· A 70's solution: structured programming, including CASE & SWITCH

· Meyer in 80's: eliminate CASE: no CASE in Eiffel until version 2.2!

· Imagine what would have happened if we hadn't had the transition diagram?

Second cut: functional, top‑down design
· Tries to exploit generality of transition diagram

· Represent transition diagram as data structure: possibly a two dimensional array

· Rows are states, columns are transitions: table shows new state

· Top‑down design of generalized menu‑driven session

· Session runs any menu system as a state transition machine

Here's the pseudo-code in Eiffel:

from Current := initial until is_final(Current)

do Next := do_one_state(Current);

Current := transition(Current,Next);

end;

· Needs four supporting functions: initial, is_final, ...

Further functional decomposition of do_one_state:

· display a panel; read user's response; determine if user's response is correct
· if not, print an error message; if correct, process the requested action

· return user's choice as new state

Need to pass state as parm from session to do_one_state, etc.

Let's critique this design for extensibility: how well will it hold up over time?
· Routines passing state around, then each routine will to discriminate state: more CASEs!

· In effect, passing application‑specific information around—breaks information hiding

· Meyer calls this the Data Transmission Problem
· Tendency in functional decomposition to pass the data around

· Law of Inversion: if there's too much data transmission in your routines,

then put your routines in your data

Deferred class STATE

· An object‑oriented design: let STATE be an ADT (class)
State has do_one_state and its subroutines as features ‑‑an abstract class

· High‑level do_one_state routine implemented

· display, read, correct, message, process routines are deferred

· Where will these routines be implemented?
Class ENQUIRY_ON_FLIGHTS

· application‑specific state: inherits from abstract STATE ‑‑STATE machine can be in library;

· application programmer designs actual states

· i.e., implements deferred routines: what to display, etc.

· Suppose we want default behavior for routines such as read?
· Provide implementation STATE, then redefine when necessary

· Architecture separates elements what is general from application details

· Open‑Closed Principle: STATE is closed (a compilable class)

· At the same time, STATE is open (by inheritance) for extensions

What about the rest of functional design—session, initial, is_final & transition?

· Meyer puts these routines sin another ADT: class APPLICATION

· draw: APPLICATION is a client of ARRAY, ARRAY2 & STATE

· transition: a table of states x choices

· associated_state: maps integers into STATEs

· first_number implements initial as a data attribute

· choose_initial lets user change this value

· enter_state and enter_transition actually assign values to tables

Session generalizes control of application

· LOOP from initial (first_number) until is_final (st_number = 0)

· Get st by indexing st_number in associated_state table

· Execute do_one_state
· Make transition, by looking it up in transition table

Advantages of this OO design is extensibility
· Add new transitions & states with enter_state & enter_transition
· Change the initial state

· Change application‑specific info in their states without modifying abstract classes in library

· Add new functionality to system, e.g., delete a state, as routine

· Add simulation and monitoring capabilities

State diagrams in UML:

· http://www.eecs.lehigh.edu/~glennb/oose/figs/state8-1.jpg is a UML state diagram

· States in ovals, transitions as arrows

· Transitions labels have three optional parts: Event [Guard] / Action

· Item Received is an event, /get first item is an action, [Not all items checked] is a guard

· State may also label activities, e.g., do/check item
· Actions, associated with transitions, occur quickly & aren’t interruptible;

· Activities, associated with states, can take longer and are interruptible

· Definition of “quickly” depends on the kind of system, e.g., real-time vs. info system

· http://www.eecs.lehigh.edu/~glennb/oose/figs/state8-3.jpg has a super-state of three states

· Can draw a single transition to and from a super-state

· How does this notation make things a bit clearer?

· http://www.eecs.lehigh.edu/~glennb/oose/figs/state8-3.jpg is a concurrent state diagram
· Dashed line indicates that an order is in two different states, e.g. Checking & Authorizing

· When order leaves concurrent states, it’s in a single state: Canceled, Delivered or Rejected

Design process procedures
Use UML package diagrams for higher level structure—cf. Meyer’s clusters, Coad’s subjects

· http://www.eecs.lehigh.edu/~glennb/oose/figs/packg7-1.jpg: note dependency arrows

· A dependency indicates that changes to one element may cause changes to the other

· http://www.eecs.lehigh.edu/~glennb/oose/figs/packg7-2.jpg: packages may include packages

· Common package as <<global>> means all packages in system have dependency to this one

· General package marked {abstract} means this package is an interface, with subtypes

· Heuristic: divide classes into packages; analyze dependencies; refactor to reduce dependencies

Conduct peer reviews at every stage of process

· CRC cards: run simulations to discover missing classes or services

· Analysis: run peer review of class & clusters

· Explain design, looking for opportunities for iterative redesign

· Interface design peer review discusses class interfaces and assertions

· Detailed design goes over plans for class semantics and testing

Plan testing on a per class basis

· In parallel with class design, not post hoc!

· Test all public member functions

· Test for valid, invalid and boundary cases

· System testing follows thorough class testing

· October 1994 issue of CACM devoted to OO software testing

