
The Universal Computer Preface Page i

The Universal Computer:
Introducing Computer Science with Multimedia

by
Glenn D. Blank, Robert F. Barnes and Edwin J. Kay
McGraw-Hill/Primis © 2003, all rights reserved.

Table of Contents

1. Introducing … the Universal Computer
Common misconceptions about computer science. Connotations of “universal computer.”
The very idea of the universal machine (Turing machines, bits and bytes).
Anatomy of a computer. Faces of a computer.

2. Problem solving before programming
Problem solving strategies. Algorithms: paths through problem space. Preliminary analysis.
Hacking through jungles. Analytical decomposition. Analogical problem solving.
Knobby’s World: a gentle introduction to programming.

3. Programming languages and their translators
Language structures. Languages for solving problems.
Translators: compilers and interpreters.
Exploring programming languages (links to tutorials for Java and Visual Basic).

4. Software engineering.
Programming-in-the large. The “waterfall” life cycle. Analysis of requirements. Use cases.
Design. Classes and UML. Implementation and testing. Delivery and maintenance.
Alternatives: iterative and incremental life cycles and extreme programming.

5. Peeling the Onion: Computer Architecture
Layers of computers. The register machine processor.
Boolean circuits. Building a RM from boolean circuits.
Connecting the processor: memory, controllers, and multi-processors.

6. Operating Systems, networks and security (two chapters in the multimedia)
From batches to networks. Booting. Operating system architecture.
Network topologies. Local and wide area networks and the Web.
Security matters: passwords, encryption and viruses.

7. Analyzing algorithms.
 Sorting and searching. “Big O” analysis. Recursive algorithms. Computability.
8. User interface and web design

User interfaces and criteria for usability. HTML and web pages. Dynamic HTML.
Adding Flash for animation. Javascript and Actionscript. Future of user interfaces.

9. Social, Professional and Ethical issues
Computers and society. Computers and privacy. Computers and legal issues.
Computers and ethical issues.

10. Artificial Intelligence
What is intelligence? The Turing test. Searching for solutions. Inference Engines.
Neural networks. Agents.

1Denning, Peter, et al. Report of the ACM Task Force on the Core of Computer Science, ACM Press, New
York, 1988. Also known as the “Denning Report.” Reprinted in part in Communications of the ACM 32, 1
(January 1989) and in Computer (February 1989).

2Tucker, Allen B., et al., Computing Curricula 1991: Report of the ACM/IEEE-CS Joint Curriculum Task
Force, ACM Press, New York, 1991 took a strong position recommending a breadth-first approach to
introducing computer science. Computing Curricula 2001 (www.computer.org/education/cc2001/
steelman/cc2001/chapter7.htm) acknowledges that “Even though the Computing Curricula 1991 report
argued strongly for a broader introduction to the discipline, the majority of institutions continue to focus on
programming in their introductory sequence.” Nevertheless, the new report notes that a “breadth-first”
approach can “provide a more holistic view of the discipline, many computer science educators have argued
for a "breadth-first" approach in which the first course considers a much broader range of topics.” At Lehigh,
we are able to cover both breadth and programming, with the help of multimedia.

The U niversal Co mputer Pre face Page ii

Preface

This textbook with its accompanying multimedia has two major goals:
(1) To explore the breadth of computing as a discipline. A narrow concentration on

programming can lead to a misconception that computer science is little more than programming.
 (The first chapter opens by addressing many common misconceptions.) There’s more to astronomy
than looking through telescopes: there’s theory, such as relativity and cosmology, there’s
experimental method, and there’s design of special-purpose instruments and probes. So there is
more to computing than just programming: there’s theory, such as the study of the limits of
computation and the complexity of algorithms; there’s the experimental method of programming and
measuring the performance of programs; and there’s the design of effective systems in software as
well as hardware. Like older sciences and mathematics, computer science emphasizes abstraction,
or pulling out the essentials. (The Report of the ACM Task Force on the Core of Computer Science1

emphasizes abstraction, theory and design in the study of computing.) This book attempts to follow
the recommendations of Computing Curricula 1991 and Computing Curricula 20012 by introducing
a breadth of knowledge areas of computing, ranging from computer architecture to artificial
intelligence. Social, professional and ethical issues are explored in a chapter, as well as in exercises
marked “social/ethical” throughout the book. Chapters and multimedia also both include many
exercises, marked “explore”, designed to get students to look beyond the book, by exploring the web
or library databases. The breadth component of this book makes it suitable for many CS0 courses.

(2) To encourage students to think about and practice software development as systematic
problem solving. We will make every effort to discourage “blind hacking”—that is, trial and error
at a computer terminal. Good programming and problem solving in general requires planning and
organization. Chapter 2 examines alternative approaches to problem solving, then gives students
an opportunity to practice these approaches using a relatively simple, graphical robot simulation
called “Knobby’s World.” Knobby is a cousin of Karel and Karel++, designed to introduce
programming as problem solving. Chapter 4 studies the software development life cycle and a
modern, object-oriented approach to problem solving and software development.

A future book will introduce programming in Java “objects first”. Java is a modern
programming language widely used for developing large software systems as well as applets running
on the web. By “objects first” we mean that the first things student learn about Java is how to
manipulate classes and objects, rather the details of the language. Pedagogically, we believe that

3 Experimental results in Glenn D.Blank, Willam M. Pottenger, Shreeram A. Sahasrabudhe, Shenzhi Li, Fang
Wei and Henry Odi. Multimedia for Computer Science: from CS0/CS1 to Grades 7-12, submitted to Ed-
Media 2003 and available at http://www.cse.lehigh.edu/~cimel/papers/EdMedia03.doc. While developing
The Universal Machine (the precursor of this book), the lead author taught CS1 to 70-80 computer science
majors and non-majors. From the first year, for which only the manuscript of the book was available, to the
second, in which an incomplete version of the multimedia was introduced, mean final examination scores
improved about six points. Knowledge of breadth topics showed notable improvement. In the third year,
with the complete first edition, mean final examination scores improved another seven points.

The U niversal Co mputer Pre face Page iii

students learn best what is taught first, and “object think” is what we think students ought to learn
best, not “Hello World.” Experimental evidence confirms that students can learn Java “objects first”
with the BlueJ programming environment, especially with our multimedia.3 We plan to deliver a
future book on Java in 2004. (Interested parties may contact us about our manuscript and multimedia
in progress.) The multimedia for the first Java chapter will be available with this book, as a way to
give beginners a taste of object-oriented programming, after Knobby’s World.

At Lehigh, the first author teaches two different first semester courses: 1) a CS0 course for
non-majors, based on this book, and 2) a CS1 course for majors and minors, which introduces both
the breadth of computer science using this book and Java programming using a different book.
Breadth of CS and Java programming may seem like a lot to cover in one semester, but in our
experience the multimedia makes it possible to learn enough about the breadth topics without
devoting much lecture time to them. Interleaving breadth/problem solving and programming
material gives students more time—breathing space, if you will—to learn Java programming by
doing. Getting a computer to do what you want it do normally takes time: time for planning a
solution, time for coding your solution, and yet more time for stamping out little “bugs”—the errors
that lurk in code or even a conceptual solution. We strongly encourage students to get started on
programming assignments early! The programming exercises integrated into the multimedia chapters
will help students get started. While the Java programming chapters assume a particular order,
instructors may cover the breadth chapters in just about any order.

Multimedia
The multimedia which accompanies The Universal Computer is complete enough that

students can learn from either the book or the multimedia, in either order, depending on their
learning styles and/or instructor assignments. The multimedia content explains the salient material
of each chapter, then reinforces concepts with interactive exercises, simulations, constructive
exercises, and quizzes. Figure 1 shows the user interface and a sample screen. Here are some of the
features of the user interface:

 < The TRACK LIST on the left displays the content of a lesson as a sequence of screens. The
menu uses check marks to show progress and highlights the current screen in red. At the bottom of
the menu there are progress indicators through the current screen and chapter.

< Multimedia personae on the lower left model a diverse community of teachers and
learners. The personae currently include three professors (one is shown) co-teaching the course, a
teaching assistant, a reference librarian, and three students. In addition to graphical images, they
speak in audio and/or text boxes. Personae model students and instructors studying material together,
working through interactive exercises, and suggest exploratory research on relevant topics using
online information.

The Universal Computer Preface Page IV

Figure 1: Screen capture from The Universal Computer’s multimedia

 < The COLLABORATE tools will facilitate network-based interaction with instructors, teaching
assistants, librarians or other students. Chat, remote-controlled SHOW ME sessions and a multimedia
FAQ of recorded SHOW ME sessions will encourage students to get help.
 < The EXPLORE button facilitates inquiry-based learning, via directed queries on the web,
adding to the exploratory exercises in the book. A state-of-the-art emerging-trends text mining and
visualization tool will help students trace emerging trends as their interest and utility grow over time.
 < The FIND button will bring up a search tool and a glossary of terms.
 < The PREFERENCES icon presents a panel of options letting the user adapt the environment
according to his or her personal learning style, including turning text boxes or audio on/off, toggling
auto-advance or wait for next page, setting the timing rate where there is no audio narration, etc. A
user may change these settings at any time during a session.
 < A JUST THE FACT S mode lets users switch to viewing non-interactive content (text and
graphics) presented in HTML pages. From there, one can switch back to rich media mode via
hyperlinks anchored to the corresponding Flash page. There are also links to interactive screens,
which remain in Flash. JUST THE FACTS mode, besides catering to some learning styles, requires less
bandwidth, and may be useful for reviewing the material quickly.

The Universal Computer Preface Page V

The multimedia for The Universal Computer has been designed to accommodate diverse
learning styles. Do play with the PREFERENCES options to suit your style! By giving students different
ways to learn material, we hope to attract more novices, especially women and minorities, to computer
science. It supplies sound and animation for sensory learners, while letting verbal learners disable sound
or switch altogether to a “just the facts” mode. Interactive materials include learner-controlled
simulations of algorithms, links to programs that students can try immediately after learning related
concepts and before exercises that make sure the learner has studied the programs, constructive exercises
in which students build programs or models by dragging pieces into place, and inquiry-based exercises
in which students learn by doing research, using the web.

While our approach is to present enough didactic material in the multimedia that it can be a stand
alone learning experience, interactivity is frequent and rich in The Universal Computer. Personae provide
feedback to all responses.

Using the multimedia
The multimedia is deliverable either via CDROM., the internet (http://cimel.cse.lehigh.edu or

www.cse.lehigh.edu/~cimel/prototype.html), or intranets set up at other institutions by arrangements with
the authors. Since all content plays through a web browser (Microsoft Internet Explorer, plus a
Macromedia Flash plug-in), it looks the same however it is delivered. An advantage of web-based
delivery is that once users log in, their activities may be recorded in a tracking system; instructors and
researchers will have access to tools visualizing a learner’s activity, or reporting the result of quizzes. An
advantage of CDROM-based delivery, on the other hand, is that it removes bandwidth constraints. (The
multimedia, especially audio and video, can be sluggish playing through 56K modems; high speed
connections or CDROM are strongly recommended.)

The CDROM disk and new web site make this a multimedia textbook. Beyond supplementing
the textual material presented in this book, the disk includes more illustrations, animations, speech and
other sounds, short movie clips, exercises and exercise solutions, bibliographic references to reading
materials via the web or in a library, and tools that will help you learn to program in Java. Print text and
multimedia can complement each other. The print text presents the core material of the course plus
recommended exercises. We have not simply put the print text and source code onto a CDROM. The
multimedia software emphasizes what is hard to show in the static medium of text: animating processes
dynamically, illustrating abstract concepts concretely, solving problems interactively.

We have designed this book with a particular audience in mind: a class that mixes potential
computer science majors with non-majors—because that’s the kind of class we teach at Lehigh
University. We want to encourage both those with those with little or no computing experience (even
those who might be a little intimidated by computers), as well as those with more experience, to explore.
We have installed the multimedia in a multimedia-capable computer laboratory which students attend
once a week. We devote about one lecture per “breadth” topic and two or three per programming topic.
We believe students can learn much of the “breadth” material and text without attempting to cover it all
in detail in lecture. Multimedia thus allows instructors and students to get the big picture, rather than
focusing too narrowly on programming.

Some schools may distinguish between majors and non-majors. A course that is more oriented
toward computer science majors may want to put more emphasis on Java programming than we do and
devote less class time to the “breadth” material, assigning multimedia chapters for students to study on
their own or in labs. An instructor who feels it is urgent to get started with programming even earlier than
we do could possibly skip programming in Knobby’s World. Students can benefit from the illustration
that this world supplies for non-programming concepts later in the book without necessarily having

The Universal Computer Preface Page VI

written Knobby’s World programs. The multimedia systematically takes students through core Java
concepts, then guides them through study of actual Java programs (by running them to see what they do,
then answering the questions about what happened), then hands-on programming of related problems,
using BlueJ or Javaedit. We believe multimedia learning is a major advance over getting source code on
a diskette—and a lot more work to produce!

On the other hand, a course for non-majors might want to give less emphasis to programming
and give more emphasis to the “breadth” material. In a CS0 course, Knobby’s World may serve as a
“gentle introduction to programming.” The syllabus for Professor Blank’s course is at
www.cse.lehigh.edu/~glennb/csc10/syl.htm.

Exercises in the textbook can serve variously as homework assignments, in class demonstration
or discussion items (we include many open-ended conceptual exercises for this purpose), and/or
examination questions. Answers to many of the exercises, including all the review questions at the end
of each chapter, are provided on both the CDROM and our Web site.

Acknowledgments
“Give thanks to the LORD, for He is good, and His love endures forever.” Psalm 118:1

A new textbook is a considerable undertaking, but a multimedia textbook must be an order of
magnitude more complex! We have learned much and benefitted much from working with a small army
of editors, writers, fellow faculty members and students.

First, we repeat our thanks to those who helped with The Universal Machine: to Connie
Coleman, our multimedia art director, to student multimedia developers John Chapman, Scott Fitch,
James Nixon, Lingan Nguyen, Jason Stanford and Beau Sullivan, and to Knobby’s World and LOOKOUT

programmers Paul Martino, Venkatesh Rao, Louis Tanzos, and Jesse Thilo, and to Denise Gürer, then
of Stanford Research Institute, for her extensive comments as well as her contributions to the “Women
in Computing” theme in the multimedia. Thanks also to Betsy Jones at WCB/McGraw-Hill, who granted
us permission to use the materials of The Universal Machine for our new book.

Second, we thank those who are helping with The Universal Computer: to the National Science
Foundation (grant # EIA-0087977) and the Pennsylvania Infrastructure Technology Alliance (PITA), to
student multimedia developers David Goldfeder, Martin Herr, Harriet Jaffe, Sumit Jain, Adam Kinnear,
Andrew Mall, Sharmeen Mecklai, Jonathan Morgan, Soma Roy, Shreeram Sahasrabudhe, David Servas,
Daniel Shire, Althea Smith, and Fang Wei.

Finally, we especially thank our wives, and our children, extended family and friends, for their
love and patience while we buried our heads in this project!

G.D.B.
R.F.B.
E.J.K.

