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Student lectures:  final vote totals

sequence comparison & alignment
sequencing & assembly
physical mapping of DNA
phylogenetic trees
genome rearrangements
RNA & protein structure
DNA microarrays
DNA computing
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Student lectures:  schedule is online

See schedule posted on Blackboard (to be updated periodically).

UP1 = Upmanyu's first meeting with me (2/12).
LN2 = Lan's second meeting with me (2/17).
AL3 = Arthur's third meeting with me (2/16).

Interpretation:
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A C G T G C G C T G - T G -C

Sequence comparison and alignment

How can we find the best (i.e., highest scoring) alignment?

C G T C C- T G C C T G C- -
If matches = +1 and mismatches = -1, then score = 7 (= 11-4).

A C G T G C G C T G C GT
C G T C C T G C C T G C

How do these two sequences relate?
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Observation leading to a solution

So, assuming we've already computed solutions for all shorter 
prefixes, we can compute the alignment for s[1..i] and t[1..j].

Given two sequences s and t, consider what's required to 
compute optimal alignment for prefixes s[1..i] and t[1..j].  Based 
on our rules for alignments, there are three possible cases:

s[i]

-

optimal 
alignment
for s[1..i-1]
and t[1..j]

I

“delete s[i]”

-

t[j]

optimal 
alignment
for s[1..i]

and t[1..j-1]

II

“insert t[j]”

s[i]

t[j]

optimal 
alignment
for s[1..i-1]
and t[1..j-1]

III

“substitute t[j] for s[i]”
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Sequence comparison:  the basic algorithm

Stated more generally, say that our two sequences are:

s [i ] s [2] s [3]s [m] t [i ] t [2] t [3]t [n]

Then: a [0,0]=0
a [i ,0]=a [i−1,0]cdel s [i ] 1≤i≤m
a [0, j ]=a [0, j−1]cinst [ j ] 1≤ j≤n

And:

a [i , j ] = max{a [i−1, j ]cdel s [i ]
a [i , j−1]cinst [ j ] 1≤i≤m ,1≤ j≤n
a [i−1, j−1]csubs [i ] , t [ j ]

and cdel, cins, and csub are costs of a deletion, an insertion, and 
a substitution, respectively.
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Sequence comparison:  tracing back for alignment

A
C
G
T

C A T

We started with the notion of alignment.  How do we get this?

0

By keeping track of optimal decisions made during algorithm:

-1

-1
0 -1
-1 0

0
-2

-1
-2
-3
-4

-1 -2 -3

-1

-2-2
-1

... and then tracing 
back optimal path:

It may not be unique!

A

-

C

C

T

T

G

A
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Keeping track of the variations

“Binary codes capable of correcting deletions, insertions and reversals,”
V. Levenshtein, Soviet Physics Daklady, 10:707-710, 1966.
(So far as I know, this is only available in Russian.)
“A general method applicable to the search for similarities in the amino acid 
sequences of two proteins,” S. B. Needleman and C. D. Wunsch, Journal of 
Molecular Biology, 48:443-453, 1970.
“The string to string correction problem,” R. A. Wagner and M. J. Fisher, 
Journal of the Association for Computing Machinery, 21(1):168-173, 1974.

Algorithm 1 Determines score and optimal global alignment.
Requires time O(mn), space O(mn).

This is often referred to as global sequence comparison.

Early literature:



CSE 397-497:  Computational Issues in Molecular Biology
Lopresti  ·  Spring 2004  ·  Lecture 4 - 9 -

A prefix view of the world

s 
t r

 i 
n 

g 
   

s
s t r i n g    t

cost of inserting t




co
st

 o
f d

el
et

in
g 

s
0

j

i

scores of optimal alignments for 
all shorter prefixes of s and t

a[i,j]
score of optimal alignment 
between s[1..i] and t[1..j]

Note that the dynamic programming matrix contains data on all 
prefix alignments – this will come in handy later.

every alignment ends here
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A prefix view of the world

s 
t r

 i 
n 

g 
   

s
s t r i n g    t

cost of inserting t




co
st

 o
f d

el
et

in
g 

s
0

a[m,n]

a[m,n] = start of optimal alignment between all of s and t.

optimal
alignment

maximum score

optimal
prefix alignment

Searching matrix for largest value yields optimal alignment 
between a prefix of s and a prefix of t.
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Keeping track of the variations

Algorithm 1 Determines score and optimal global alignment.
Requires time O(mn), space O(mn).

Algorithm 2 Algorithm 1 + search for largest score.
Determines score and optimal prefix alignment.
Requires time O(mn), space O(mn).
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Local comparison

There are times when the best substring match is desired: 

s t r i n g    t

s 
t r

 i 
n 

g 
   

s

maximum score

alignment ends here

View:  want best 
suffix for a given 
prefix.

Allow alignment to 
start and end at
any point.
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Local comparison

Make a couple straightforward modifications to basic algorithm:

Initial conditions: a [0,0]=0
a [i ,0]=0 1≤i≤m
a [0, j ]=0 1≤ j≤n

Recurrence:

a [i , j ] = max{a [i−1, j ]cdel s [i ]
a [i , j−1]cinst [ j ] 1≤i≤m ,1≤ j≤n
a [i−1, j−1]csubs [i ] , t [ j ]
0

allow alignment to ignore unmatched 
prefix of s or t (initial deletions or 
insertions don't contribute to best match)

Finally, we search resulting matrix for largest score.

allow alignment to ignore prefixes if not good match
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Local comparison

Algorithm 3 Algorithm 1 + new initial conditions + new choice 
in recurrence + search for largest score.
Determines score and optimal local alignment.
Requires time O(mn), space O(mn).

Often, we care not just about the single best local alignment, 
but other local alignments that are almost as good.

“Identification of common molecular sequences,” T. F. Smith and M. S. Waterman, 
Journal of Molecular Biology, 147:195-197, 1981.
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Variations:  what might we be missing?

Algorithm 1
(global)

Algorithm 2
(prefix)

Algorithm 3
(local)

Algorithm 4
(suffix)
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A suffix view of the world

s t r i n g    t

s 
t r

 i 
n 

g 
   

s

alignment ends here
As before, want best 
suffix for given prefix.

Allow alignment to
end at any point, but 
must start at [m,n].

Use same initial conditions and recurrence as Algorithm 3 for 
local comparison, except don't search entire matrix for 
maximum score – just use value at [m,n].

a[m,n]
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Semiglobal comparison

Note that global comparison algorithm forces both sequences 
to be aligned in their entireties.
Conversely, the other three algorithms make no such demands 
on either sequence.

There is a middle ground, however.  We could insist one string 
(or other) be used completely, while other is unconstrained:

(Note:  in some disciplines this is called “word spotting.”)
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Semiglobal comparison

s t r i n g    t

s 
t r

 i 
n 

g 
   

s

alignment ends
in this column

Initialize first column to 
0's (allow alignment to 
end anywhere).

Search last column for 
max (allow alignment to 
start anywhere).

Say that string s is unconstrained while string t must be used in 
entirety (other case is symmetric).

alignment starts
in this column

Recurrence is same as 
Algorithm 1 for global 
comparison.
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Keeping track of the variations

Algorithm 1    (global)

Algorithm 2   (prefix)

Algorithm 3    (local)

Algorithm 4    (suffix)

Algorithm 5    (semiglobal 1)

Algorithm 6   (semiglobal 2)

Algorithm 7    (semiglobal 3)

All are variations on same 
dynamic programming algorithm 
requiring time and space O(mn).
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Potential confusion

What is the difference between local comparison and 
semiglobal comparison when applied to both sequences?

s t r i n g    t

s 
t r

 i 
n 

g 
   

s

maximum score

alignment ends here

s t r i n g    t

s 
t r

 i 
n 

g 
   

s

best alignment begins 
somewhere in here

best alignment ends 
somewhere in here

• Former allows ignoring prefixes and suffixes in both strings.
• Latter is equivalent to ignoring one or the other prefix, but not 

both, and one or the other suffix, but not both.

vs.
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Saving space

a [i , j ] = max{a [i−1, j ]cdel s [i ]
a [i , j−1]cinst [ j ] 1≤i≤m ,1≤ j≤n
a [i−1, j−1]csubs [i ] , t [ j ]

Recall that the initial formulation requires space O(mn).

Observe, though, that each cell only depends on neighbors:

Hence, we can compute optimal score in linear space.

forget forget

forget
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Saving space when computing alignments

Determining optimal alignment in linear space is trickier.

s t r i n g    t

s 
t r

 i 
n 

g 
   

s

iWe know optimal 
alignment must 
cross this line at 
some point, but we 
don't know where.

Two possible cases:
(1)  s[i] matches t[j] for 1  j  n.
(2)  s[i] matches space between t[j] and t[j+1] for 0  j  n.

???

t[j] t[j] t[j+1]

Consider index i
in string s.
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Saving space when computing alignments

Let's say case (1) applies, so s[i] matches with t[j]:

optimals [1. . i−1]
t [1. . j−1]  s [i ]

t [ j ]
 optimals [i1. .m]

t [ j1. . n]
On other hand, if case (2) applies and s[i] matches a space:

optimals [1. . i−1]
t [1. . j ]   s [i ]

 − 
 optimals [i1. .m]

t [ j1. . n]
This gives us a recursive algorithm for computing alignment.
For given value of i, we already know how to compute similarity 
between s[1..i-1] and all prefixes of t in linear space.  This 
yields first recursive term.
Analogous approach applied to suffixes of t yields second term.
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Saving space when computing alignments

As a result of one pair of prefix and suffix computations:

j j j j j j j

choose best value 
of j and recurse

etc.

etc.
This picture also gives clue as to why increase 
in time complexity is constant factor (x2), so 
asymptotic time complexity remains O(mn).

Hence, space complexity drops to O(m). 

try all possible values for j 
(and spaces inbetween) to 

find optimal
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General gap penalties

What is the difference between these two alignments?

A

A

C

C

G

G

C

A

-

C

T G

G C T G

- -

-

A

-

C

-

G

C

A

C

C

T G

G C T G

A G
While scores are the same, second is preferable (fewer gaps).
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General gap penalties

A gap is a series of k > 1 consecutive spaces.  All else being 
equal, we prefer one gap of k spaces over k gaps of one space.

Let w(k) be our gap penalty.  Before, we had w(k) = bk where b 
was a constant (the deletion and insertion cost).  This is an 
additive gap penalty, which may not be true in general.

Assumptions we used to partition problem no longer valid. E.g.,

s[i]

-

optimal 
alignment
for s[1..i-1]
and t[1..j]

Cost of this alignment 
depends on whether or 
not optimal alignment for 
s[1..i-1] and t[1..j] has gap 
in t and, if so, its length.

a [i−1, j ]cdel s [i ]So we can't just call this:
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General gap penalties

We must now think of computing alignments in terms of 
blocks, maximal substrings where score additivity still holds.

A

A

C

C

G

G

C

A

-

C

T G

G C T G

- -

-

A

-

C

-

G

C

A

C

C

T G

G C T G

A G

6 matches + w(1) + w(2)
6 matches + w(3)

In general,
w(3)  w(1) + w(2)
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General gap penalties

Cost of gap of consecutive spaces depends on final length.
As before, let's look at index i in string s, index j in string t:

i

j

?
i

j

i-1

j-1

i

j

i

j

i

j

?
i

j

i

j

i

j

i

j

i

j

?

i-1

j-1

i-1

j-1

j-k j-k

i-k i-k
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General gap penalties

At any given point in time, alignment is in one of three states:
(1) last column may be pair of symbols from s and t,
(2) last column may be last space in gap in s,
(3) last column may be last space in gap in t,

Since we don't know which alternative the optimal solution will 
employ, we need to maintain three separate arrays a, b, and c.

a[i,j] assumes s[i] aligns with t[j].
b[i,j] assumes t[j] is matched to end of gap of spaces in s.
c[i,j] assumes s[i] is matched to end of gap of spaces in t.
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General gap penalties

Initial conditions: a [0,0]=0
b [0, j ]=−w  j 
c [i ,0]=−w i

a [i , j ] = csubs [i ] , t [ j ]  max{a [i−1, j−1]
b [i−1, j−1]
c [i−1, j−1]

Recurrences:

b [i , j ] = max{a [i , j−k ]−w k  1≤k≤ j
c [i , j−k ]−w k  1≤k≤ j

c [i , j ] = max{a [i−k , j ]−w k  1≤k≤i
b [i−k , j ]−w k  1≤k≤i

Final score is max of a[m,n], b[m,n], and c[m,n].
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General gap penalties

What is time complexity of this algorithm?

Count number of times a previous value is read:

a [i , j ] = csubs [i ] , t [ j ]  max{a [i−1, j−1]
b [i−1, j−1]
c [i−1, j−1]

= 3

= 2j

= 2i

∑
i=1

m

∑
j=1

n

2 i2 j3Hence, result we want is:

b [i , j ] = max{a [i , j−k ]−w k  1≤k≤ j
c [i , j−k ]−w k  1≤k≤ j

c [i , j ] = max{a [i−k , j ]−w k  1≤k≤i
b [i−k , j ]−w k  1≤k≤i
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General gap penalties

∑
i=1

m

∑
j=1

n

2 i2 j3Computing time complexity:

∑
j=1

n

2 i2 j3 = 2ni3n2∑
j=1

n

j = 

Look at inner summation:

2ni3nnn1 = 2nin24n

Then:

∑
i=1

m

2n in24n = mn24mnn2∑
i=1

m

i = 

mn24mnnmm1 = m2n5mnmn2

Hence time complexity is O(m2n + mn2).
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Affine gap penalties

Assuming less generality about w(k), we can do better.
Say that w(k) = h + gk.  This is known as an affine gap penalty.

Now we only need to keep track of whether given space is first 
space in gap (in which case cost is h + g), or continuation of 
existing gap (in which case cost is g).

As before, we still need to maintain three arrays, a, b, and c:
a[i,j] assumes s[i] aligns with t[j].
b[i,j] assumes t[j] aligns with space in s.
c[i,j] assumes s[i] aligns with space in t.
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Affine gap penalties

a [i , j ] = csubs [i ] , t [ j ]  max{a [i−1, j−1]
b [i−1, j−1]
c [i−1, j−1]

b [i , j ] = max{a [i , j−1]−hg 
b [i , j−1]−g
c [i , j−1]−hg 

c [i , j ] = max{a [i−1, j ]−hg 
b [i−1, j ]−hg 
c [i−1, j ]−g

Recurrences:

Time complexity here is O(mn).
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Wrap-up

Remember:
• Come to class prepared to discuss what you have read.
• Check Blackboard regularly for updates.

Readings for next time:
• “The String-to-String Correction Problem with Block Moves,” 

W. F. Tichy, ACM Transactions on Computer Systems,
2(4):309-321, November 1984.

• “Block Edit Models for Approximate String Matching,”
D. Lopresti and A. Tomkins, Theoretical Computer Science, 
vol. 181, no. 1, 1997, pp. 159-179.
(Both papers available online or in Blackboard.)


