
CSE 397-497: Computational Issues in Molecular Biology
Lopresti · Spring 2004 · Lecture 4 - 1 -

CSE 397-497:
Computational Issues in

Molecular Biology

Lecture 4

Spring 2004

CSE 397-497: Computational Issues in Molecular Biology
Lopresti · Spring 2004 · Lecture 4 - 2 -

Student lectures: final vote totals

sequence comparison & alignment
sequencing & assembly
physical mapping of DNA
phylogenetic trees
genome rearrangements
RNA & protein structure
DNA microarrays
DNA computing

5
2
0
1
2
1
0
4

2
4
3
2
1
0
2
1

0
1
6
2
0
1
3
2

7
7
9
5
3
2
5
7

Topic 1st 2nd 3rd Total

CSE 397-497: Computational Issues in Molecular Biology
Lopresti · Spring 2004 · Lecture 4 - 3 -

Student lectures: schedule is online

See schedule posted on Blackboard (to be updated periodically).

UP1 = Upmanyu's first meeting with me (2/12).
LN2 = Lan's second meeting with me (2/17).
AL3 = Arthur's third meeting with me (2/16).

Interpretation:

CSE 397-497: Computational Issues in Molecular Biology
Lopresti · Spring 2004 · Lecture 4 - 4 -

A C G T G C G C T G - T G -C

Sequence comparison and alignment

How can we find the best (i.e., highest scoring) alignment?

C G T C C- T G C C T G C- -
If matches = +1 and mismatches = -1, then score = 7 (= 11-4).

A C G T G C G C T G C GT
C G T C C T G C C T G C

How do these two sequences relate?

CSE 397-497: Computational Issues in Molecular Biology
Lopresti · Spring 2004 · Lecture 4 - 5 -

Observation leading to a solution

So, assuming we've already computed solutions for all shorter
prefixes, we can compute the alignment for s[1..i] and t[1..j].

Given two sequences s and t, consider what's required to
compute optimal alignment for prefixes s[1..i] and t[1..j]. Based
on our rules for alignments, there are three possible cases:

s[i]

-

optimal
alignment
for s[1..i-1]
and t[1..j]

I

“delete s[i]”

-

t[j]

optimal
alignment
for s[1..i]

and t[1..j-1]

II

“insert t[j]”

s[i]

t[j]

optimal
alignment
for s[1..i-1]
and t[1..j-1]

III

“substitute t[j] for s[i]”

CSE 397-497: Computational Issues in Molecular Biology
Lopresti · Spring 2004 · Lecture 4 - 6 -

Sequence comparison: the basic algorithm

Stated more generally, say that our two sequences are:

s [i] s [2] s [3]s [m] t [i] t [2] t [3]t [n]

Then: a [0,0]=0
a [i ,0]=a [i−1,0]cdel s [i] 1≤i≤m
a [0, j]=a [0, j−1]cinst [j] 1≤ j≤n

And:

a [i , j] = max{a [i−1, j]cdel s [i]
a [i , j−1]cinst [j] 1≤i≤m ,1≤ j≤n
a [i−1, j−1]csubs [i] , t [j]

and cdel, cins, and csub are costs of a deletion, an insertion, and
a substitution, respectively.

CSE 397-497: Computational Issues in Molecular Biology
Lopresti · Spring 2004 · Lecture 4 - 7 -

Sequence comparison: tracing back for alignment

A
C
G
T

C A T

We started with the notion of alignment. How do we get this?

0

By keeping track of optimal decisions made during algorithm:

-1

-1
0 -1
-1 0

0
-2

-1
-2
-3
-4

-1 -2 -3

-1

-2-2
-1

... and then tracing
back optimal path:

It may not be unique!

A

-

C

C

T

T

G

A

CSE 397-497: Computational Issues in Molecular Biology
Lopresti · Spring 2004 · Lecture 4 - 8 -

Keeping track of the variations

“Binary codes capable of correcting deletions, insertions and reversals,”
V. Levenshtein, Soviet Physics Daklady, 10:707-710, 1966.
(So far as I know, this is only available in Russian.)
“A general method applicable to the search for similarities in the amino acid
sequences of two proteins,” S. B. Needleman and C. D. Wunsch, Journal of
Molecular Biology, 48:443-453, 1970.
“The string to string correction problem,” R. A. Wagner and M. J. Fisher,
Journal of the Association for Computing Machinery, 21(1):168-173, 1974.

Algorithm 1 Determines score and optimal global alignment.
Requires time O(mn), space O(mn).

This is often referred to as global sequence comparison.

Early literature:

CSE 397-497: Computational Issues in Molecular Biology
Lopresti · Spring 2004 · Lecture 4 - 9 -

A prefix view of the world

s
t r

 i
n

g

s
s t r i n g t

cost of inserting t




co
st

 o
f d

el
et

in
g

s
0

j

i

scores of optimal alignments for
all shorter prefixes of s and t

a[i,j]
score of optimal alignment
between s[1..i] and t[1..j]

Note that the dynamic programming matrix contains data on all
prefix alignments – this will come in handy later.

every alignment ends here

CSE 397-497: Computational Issues in Molecular Biology
Lopresti · Spring 2004 · Lecture 4 - 10 -

A prefix view of the world

s
t r

 i
n

g

s
s t r i n g t

cost of inserting t




co
st

 o
f d

el
et

in
g

s
0

a[m,n]

a[m,n] = start of optimal alignment between all of s and t.

optimal
alignment

maximum score

optimal
prefix alignment

Searching matrix for largest value yields optimal alignment
between a prefix of s and a prefix of t.

CSE 397-497: Computational Issues in Molecular Biology
Lopresti · Spring 2004 · Lecture 4 - 11 -

Keeping track of the variations

Algorithm 1 Determines score and optimal global alignment.
Requires time O(mn), space O(mn).

Algorithm 2 Algorithm 1 + search for largest score.
Determines score and optimal prefix alignment.
Requires time O(mn), space O(mn).

CSE 397-497: Computational Issues in Molecular Biology
Lopresti · Spring 2004 · Lecture 4 - 12 -

Local comparison

There are times when the best substring match is desired:

s t r i n g t

s
t r

 i
n

g

s

maximum score

alignment ends here

View: want best
suffix for a given
prefix.

Allow alignment to
start and end at
any point.

CSE 397-497: Computational Issues in Molecular Biology
Lopresti · Spring 2004 · Lecture 4 - 13 -

Local comparison

Make a couple straightforward modifications to basic algorithm:

Initial conditions: a [0,0]=0
a [i ,0]=0 1≤i≤m
a [0, j]=0 1≤ j≤n

Recurrence:

a [i , j] = max{a [i−1, j]cdel s [i]
a [i , j−1]cinst [j] 1≤i≤m ,1≤ j≤n
a [i−1, j−1]csubs [i] , t [j]
0

allow alignment to ignore unmatched
prefix of s or t (initial deletions or
insertions don't contribute to best match)

Finally, we search resulting matrix for largest score.

allow alignment to ignore prefixes if not good match

CSE 397-497: Computational Issues in Molecular Biology
Lopresti · Spring 2004 · Lecture 4 - 14 -

Local comparison

Algorithm 3 Algorithm 1 + new initial conditions + new choice
in recurrence + search for largest score.
Determines score and optimal local alignment.
Requires time O(mn), space O(mn).

Often, we care not just about the single best local alignment,
but other local alignments that are almost as good.

“Identification of common molecular sequences,” T. F. Smith and M. S. Waterman,
Journal of Molecular Biology, 147:195-197, 1981.

CSE 397-497: Computational Issues in Molecular Biology
Lopresti · Spring 2004 · Lecture 4 - 15 -

Variations: what might we be missing?

Algorithm 1
(global)

Algorithm 2
(prefix)

Algorithm 3
(local)

Algorithm 4
(suffix)

CSE 397-497: Computational Issues in Molecular Biology
Lopresti · Spring 2004 · Lecture 4 - 16 -

A suffix view of the world

s t r i n g t

s
t r

 i
n

g

s

alignment ends here
As before, want best
suffix for given prefix.

Allow alignment to
end at any point, but
must start at [m,n].

Use same initial conditions and recurrence as Algorithm 3 for
local comparison, except don't search entire matrix for
maximum score – just use value at [m,n].

a[m,n]

CSE 397-497: Computational Issues in Molecular Biology
Lopresti · Spring 2004 · Lecture 4 - 17 -

Semiglobal comparison

Note that global comparison algorithm forces both sequences
to be aligned in their entireties.
Conversely, the other three algorithms make no such demands
on either sequence.

There is a middle ground, however. We could insist one string
(or other) be used completely, while other is unconstrained:

(Note: in some disciplines this is called “word spotting.”)

CSE 397-497: Computational Issues in Molecular Biology
Lopresti · Spring 2004 · Lecture 4 - 18 -

Semiglobal comparison

s t r i n g t

s
t r

 i
n

g

s

alignment ends
in this column

Initialize first column to
0's (allow alignment to
end anywhere).

Search last column for
max (allow alignment to
start anywhere).

Say that string s is unconstrained while string t must be used in
entirety (other case is symmetric).

alignment starts
in this column

Recurrence is same as
Algorithm 1 for global
comparison.

CSE 397-497: Computational Issues in Molecular Biology
Lopresti · Spring 2004 · Lecture 4 - 19 -

Keeping track of the variations

Algorithm 1 (global)

Algorithm 2 (prefix)

Algorithm 3 (local)

Algorithm 4 (suffix)

Algorithm 5 (semiglobal 1)

Algorithm 6 (semiglobal 2)

Algorithm 7 (semiglobal 3)

All are variations on same
dynamic programming algorithm
requiring time and space O(mn).

CSE 397-497: Computational Issues in Molecular Biology
Lopresti · Spring 2004 · Lecture 4 - 20 -

Potential confusion

What is the difference between local comparison and
semiglobal comparison when applied to both sequences?

s t r i n g t

s
t r

 i
n

g

s

maximum score

alignment ends here

s t r i n g t

s
t r

 i
n

g

s

best alignment begins
somewhere in here

best alignment ends
somewhere in here

• Former allows ignoring prefixes and suffixes in both strings.
• Latter is equivalent to ignoring one or the other prefix, but not

both, and one or the other suffix, but not both.

vs.

CSE 397-497: Computational Issues in Molecular Biology
Lopresti · Spring 2004 · Lecture 4 - 21 -

Saving space

a [i , j] = max{a [i−1, j]cdel s [i]
a [i , j−1]cinst [j] 1≤i≤m ,1≤ j≤n
a [i−1, j−1]csubs [i] , t [j]

Recall that the initial formulation requires space O(mn).

Observe, though, that each cell only depends on neighbors:

Hence, we can compute optimal score in linear space.

forget forget

forget

CSE 397-497: Computational Issues in Molecular Biology
Lopresti · Spring 2004 · Lecture 4 - 22 -

Saving space when computing alignments

Determining optimal alignment in linear space is trickier.

s t r i n g t

s
t r

 i
n

g

s

iWe know optimal
alignment must
cross this line at
some point, but we
don't know where.

Two possible cases:
(1) s[i] matches t[j] for 1  j  n.
(2) s[i] matches space between t[j] and t[j+1] for 0  j  n.

???

t[j] t[j] t[j+1]

Consider index i
in string s.

CSE 397-497: Computational Issues in Molecular Biology
Lopresti · Spring 2004 · Lecture 4 - 23 -

Saving space when computing alignments

Let's say case (1) applies, so s[i] matches with t[j]:

optimals [1. . i−1]
t [1. . j−1]  s [i]

t [j]
 optimals [i1. .m]

t [j1. . n]
On other hand, if case (2) applies and s[i] matches a space:

optimals [1. . i−1]
t [1. . j]   s [i]

 −
 optimals [i1. .m]

t [j1. . n]
This gives us a recursive algorithm for computing alignment.
For given value of i, we already know how to compute similarity
between s[1..i-1] and all prefixes of t in linear space. This
yields first recursive term.
Analogous approach applied to suffixes of t yields second term.

CSE 397-497: Computational Issues in Molecular Biology
Lopresti · Spring 2004 · Lecture 4 - 24 -

Saving space when computing alignments

As a result of one pair of prefix and suffix computations:

j j j j j j j

choose best value
of j and recurse

etc.

etc.
This picture also gives clue as to why increase
in time complexity is constant factor (x2), so
asymptotic time complexity remains O(mn).

Hence, space complexity drops to O(m).

try all possible values for j
(and spaces inbetween) to

find optimal

CSE 397-497: Computational Issues in Molecular Biology
Lopresti · Spring 2004 · Lecture 4 - 25 -

General gap penalties

What is the difference between these two alignments?

A

A

C

C

G

G

C

A

-

C

T G

G C T G

- -

-

A

-

C

-

G

C

A

C

C

T G

G C T G

A G
While scores are the same, second is preferable (fewer gaps).

CSE 397-497: Computational Issues in Molecular Biology
Lopresti · Spring 2004 · Lecture 4 - 26 -

General gap penalties

A gap is a series of k > 1 consecutive spaces. All else being
equal, we prefer one gap of k spaces over k gaps of one space.

Let w(k) be our gap penalty. Before, we had w(k) = bk where b
was a constant (the deletion and insertion cost). This is an
additive gap penalty, which may not be true in general.

Assumptions we used to partition problem no longer valid. E.g.,

s[i]

-

optimal
alignment
for s[1..i-1]
and t[1..j]

Cost of this alignment
depends on whether or
not optimal alignment for
s[1..i-1] and t[1..j] has gap
in t and, if so, its length.

a [i−1, j]cdel s [i]So we can't just call this:

CSE 397-497: Computational Issues in Molecular Biology
Lopresti · Spring 2004 · Lecture 4 - 27 -

General gap penalties

We must now think of computing alignments in terms of
blocks, maximal substrings where score additivity still holds.

A

A

C

C

G

G

C

A

-

C

T G

G C T G

- -

-

A

-

C

-

G

C

A

C

C

T G

G C T G

A G

6 matches + w(1) + w(2)
6 matches + w(3)

In general,
w(3)  w(1) + w(2)

CSE 397-497: Computational Issues in Molecular Biology
Lopresti · Spring 2004 · Lecture 4 - 28 -

General gap penalties

Cost of gap of consecutive spaces depends on final length.
As before, let's look at index i in string s, index j in string t:

i

j

?
i

j

i-1

j-1

i

j

i

j

i

j

?
i

j

i

j

i

j

i

j

i

j

?

i-1

j-1

i-1

j-1

j-k j-k

i-k i-k

CSE 397-497: Computational Issues in Molecular Biology
Lopresti · Spring 2004 · Lecture 4 - 29 -

General gap penalties

At any given point in time, alignment is in one of three states:
(1) last column may be pair of symbols from s and t,
(2) last column may be last space in gap in s,
(3) last column may be last space in gap in t,

Since we don't know which alternative the optimal solution will
employ, we need to maintain three separate arrays a, b, and c.

a[i,j] assumes s[i] aligns with t[j].
b[i,j] assumes t[j] is matched to end of gap of spaces in s.
c[i,j] assumes s[i] is matched to end of gap of spaces in t.

CSE 397-497: Computational Issues in Molecular Biology
Lopresti · Spring 2004 · Lecture 4 - 30 -

General gap penalties

Initial conditions: a [0,0]=0
b [0, j]=−w  j 
c [i ,0]=−w i

a [i , j] = csubs [i] , t [j]  max{a [i−1, j−1]
b [i−1, j−1]
c [i−1, j−1]

Recurrences:

b [i , j] = max{a [i , j−k]−w k  1≤k≤ j
c [i , j−k]−w k  1≤k≤ j

c [i , j] = max{a [i−k , j]−w k  1≤k≤i
b [i−k , j]−w k  1≤k≤i

Final score is max of a[m,n], b[m,n], and c[m,n].

CSE 397-497: Computational Issues in Molecular Biology
Lopresti · Spring 2004 · Lecture 4 - 31 -

General gap penalties

What is time complexity of this algorithm?

Count number of times a previous value is read:

a [i , j] = csubs [i] , t [j]  max{a [i−1, j−1]
b [i−1, j−1]
c [i−1, j−1]

= 3

= 2j

= 2i

∑
i=1

m

∑
j=1

n

2 i2 j3Hence, result we want is:

b [i , j] = max{a [i , j−k]−w k  1≤k≤ j
c [i , j−k]−w k  1≤k≤ j

c [i , j] = max{a [i−k , j]−w k  1≤k≤i
b [i−k , j]−w k  1≤k≤i

CSE 397-497: Computational Issues in Molecular Biology
Lopresti · Spring 2004 · Lecture 4 - 32 -

General gap penalties

∑
i=1

m

∑
j=1

n

2 i2 j3Computing time complexity:

∑
j=1

n

2 i2 j3 = 2ni3n2∑
j=1

n

j =

Look at inner summation:

2ni3nnn1 = 2nin24n

Then:

∑
i=1

m

2n in24n = mn24mnn2∑
i=1

m

i =

mn24mnnmm1 = m2n5mnmn2

Hence time complexity is O(m2n + mn2).

CSE 397-497: Computational Issues in Molecular Biology
Lopresti · Spring 2004 · Lecture 4 - 33 -

Affine gap penalties

Assuming less generality about w(k), we can do better.
Say that w(k) = h + gk. This is known as an affine gap penalty.

Now we only need to keep track of whether given space is first
space in gap (in which case cost is h + g), or continuation of
existing gap (in which case cost is g).

As before, we still need to maintain three arrays, a, b, and c:
a[i,j] assumes s[i] aligns with t[j].
b[i,j] assumes t[j] aligns with space in s.
c[i,j] assumes s[i] aligns with space in t.

CSE 397-497: Computational Issues in Molecular Biology
Lopresti · Spring 2004 · Lecture 4 - 34 -

Affine gap penalties

a [i , j] = csubs [i] , t [j]  max{a [i−1, j−1]
b [i−1, j−1]
c [i−1, j−1]

b [i , j] = max{a [i , j−1]−hg 
b [i , j−1]−g
c [i , j−1]−hg 

c [i , j] = max{a [i−1, j]−hg 
b [i−1, j]−hg 
c [i−1, j]−g

Recurrences:

Time complexity here is O(mn).

CSE 397-497: Computational Issues in Molecular Biology
Lopresti · Spring 2004 · Lecture 4 - 35 -

Wrap-up

Remember:
• Come to class prepared to discuss what you have read.
• Check Blackboard regularly for updates.

Readings for next time:
• “The String-to-String Correction Problem with Block Moves,”

W. F. Tichy, ACM Transactions on Computer Systems,
2(4):309-321, November 1984.

• “Block Edit Models for Approximate String Matching,”
D. Lopresti and A. Tomkins, Theoretical Computer Science,
vol. 181, no. 1, 1997, pp. 159-179.
(Both papers available online or in Blackboard.)

