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ABSTRACT

In statistical pattern recognition, the Bayes Risk serves as
a reference — a limit of excellence that cannot be surpassed.
In this paper, we show that by relaxing the assumption
that the input be sampled only once, a classification sys-
tem can be built that beats the Bayes error bound. We
present a detailed analysis of the effects of repeated sam-
pling, including proofs that it always yields a net improve-
ment in recognition accuracy for common distributions of
interest. Upper and lower bounds on the net improvement
are also discussed. We conclude by giving preliminary ex-
perimental results that illustrate the applicability of this
approach.

INTRODUCTION

A fundamental problem in pattern recognition is to take
an unidentified object and associate it with one of a set of
pre-defined classes according to the measurement of some
number of its physical attributes. It is well known that the
error rate for any statistical classifier based on a specific
collection of attributes, or feature set, is lower-bounded
by the Bayes Risk [1, 3]. In this paper, we show that by
relaxing a basic assumption — that the input be sampled
only once — a classification system can be built that beats
the Bayes error bound. This result is not just a theoreti-
cal curiosity, but appears to have practical applications in
real-world recognition problems.

According to the Bayes theorem, the design of a sta-
tistical classifier is dictated by the characteristics of the a
priori class probabilities and by the conditional probability
distributions of the measured features for each class. Once
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the distributions of these random variables are known, the
optimal classification boundaries are determined by the
Bayes decision rule. Errors arise when the distributions
for different classes overlap (e.g., Figure 1). In the tradi-
tional case, such mistakes are unavoidable; the classifier
is “optimal” in the sense that it minimizes this base error
rate.

In a previous paper, we introduced a methodology that
reduces the residual error rate in optical character recogni-
tion (OCR) by sampling the input repeatedly and combin-
ing the results through a novel voting scheme [6]. We ob-
served that between 20% and 40% of the OCR errors were
eliminated when we simply scanned a page three times
and applied consensus sequence voting on the output from
a particular OCR package. We speculate that when the
performance of a recognition process is very high (e.g.,
99% or higher), a significant portion of the remaining er-
rors arise from “unlucky” random fluctuations in the input
data. In this paper, we present a formal analysis of this
effect, showing that better performance — beyond the limit
of the Bayes error bound — can be achieved by exploiting
the small variations inherent in observed measurements.
We also present preliminary experimental results that il-
lustrate the application of this approach to a specific prob-
lem in machine vision.

PRELIMINARIES

A pattern recognition system can be viewed as consist-
ing of three parts: a set of pattern classes, an observation
space, and a decision mechanism. Pattern classes repre-
sent abstract categories from which objects are drawn.
Examples include symbols over a given alphabet (e.g.,
{a,b,c,...}), editing gestures made with a pen, compo-
nents to be assembled by a robot, etc. We denote the set



of pattern classes as C = {C',C3,...,C,,}. The observa-
tion space, also abstract, is a vector X = (X7, Xo,..., X,,)
representing information that can be extracted from ob-
jects (e.g., color, texture, length of a substructure, an-
gle of a curve). For a specific instance of an object,
x = (@1,22,...,%4), ; € X;, represents the set of values
X takes on. During the recognition process, these quanti-
ties are measured, and a class assignment is made by the
decision mechanism.

In reality, it is not possible to determine a single, “true”
feature vector x for an object. Rather, x is sampled via a
stochastic process. In some sense, the innate value is hid-
den from direct observation. For example, we know that
football fields are supposed to be 100 yards long. Hence, if
X1 = length is a feature of interest, then we would expect
x1 = 100 yards for a particular football field. However, in
the case of real foothall fields, we are likely to see a series
of slightly different values, even when measuring the same
field twice. Hence, any assessment of X is inevitably em-
bedded in some randomness, and the recognition system
can only obtain an approximation of the value x.

To make this distinction clear, we employ “hat” notation
x = (&1,232,...,%,) to designate the observations returned
by the stochastic process. In the example above, we might
have &y = 100.1 yards, 99.7 yards, 100.2 yards, ..., as a
succession of measurements. The set of all possible X’s is
denoted by X. We further let M represent the stochastic
process. For a given object v with innate feature vector
x, each output from M is a random vector defined on a
probability space by the conditional probability:

Pr(X =%|v)=Pr(X is measured as x|v), (1)

or the corresponding probability density function
pu(x| 7).

In this paper, we model the observation process for a
given class as an additive perturbance X =X+ N, where
N represents random “noise.” We denote the probability
density function governing the perturbance as pn (2| C)),
and let p(x | C;) signify the probability density function of
the hidden random vector X, taken over all objects in class
C;. The distribution of X is described by the conditional
probability density function p(x|C;). In the following dis-
cussion, the term hidden distribution refers to p(x|C}),
the term primary distribution refers to p(x|C;), and the
term secondary distribution refers to par(x| 7). A sample
is the outcome of an observation process, while repeated
sampling refers to observations made of the same input.

When only a single observation x for a given object
is used, the decision rules are determined by the condi-
tional probability functions p(x | C;) for all classes C; € C.
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Figure 1: Primary and secondary probability distributions
for a two-class recognition problem.

The rules that minimize the overall expected error rate
are known as the Bayes decision rules. We use Pr(c|C})
to represent the mis-classification rate for class C;. The
Bayes risk is a weighted average of the mis-classification
rates for all classes: P. = S2ZM Pr(e|C;)P(C;). Note
that the Bayes risk is the smallest error rate possible for a
given feature set under the indicated observation process.
In traditional classifier theory, any improvement beyond
this requires changing the feature set and/or the observa-
tion process. Even if it were possible for the observation
process to be perfect (i.e., noiseless), mistakes might still
be inevitable: two objects from different classes possessing
the same innate feature vector x are effectively indistin-
guishable. We call such errors the intrinsic errors of a
recognition system and its associated feature set.

AN APPROACH FOR BEATING
THE BAYES BOUND

In Bayes classifier design, the discussion is centered on
“single use” decision situations. That is, a single obser-
vation is made of an input and then a decision is reached
based on that observation. The premise of our technique
for improving on the Bayes bound lies in the fact that the
underlying physical attributes of an object can be sampled
more than once (e.g., a page of text can be scanned several
times). Since the measurement of a field datum is a ran-
dom variable, the outcome of each sample is potentially
different.

For purposes of illustration, suppose we have two classes,
A and B, with conditional probability distributions as
shown in Figure 1. The Bayes decision boundary is
X = (z9). Now assume that we are presented with a par-
ticular instance « from class A, and that the measured fea-



ture has a secondary Gaussian-type distribution pas(x|a)
with mean p. It is clear that if p, lies close to the deci-
sion boundary, a given observation X may fall on the wrong
side, resulting in a classification error. The probability this
event happens is [ py(X | ) dx.

However, if several measurements are taken, the major-
ity of them should fall on the proper side of the decision
boundary (see case (2)in Figure 1). In other words, recog-
nition is made more reliable in spite of individual failures
by taking the consensus of repeated samples of the in-
put. Conversely, if the mean falls on the wrong side of the
boundary, g, > xo, the voting scheme may actually do
more harm than good (case (3) in Figure 1). Intuitively,
though, it should be evident from the shape of the pri-
mary distribution for class A that this approach is likely
to work more often than not. In the following sections, we
show that there is always a net improvement in recognition
accuracy for common distributions of interest.
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Figure 2: Pattern recognition using repeated sampling.

Figure 2 presents an overview of the approach. Note
that the classifier in the figure is still limited by the Bayes
bound. However, the performance of the system as a whole
can be better than this, as we have noted. To demonstrate
this more concretely, we performed a simulation of the
two-class problem illustrated in Figure 1. We chose means
for the secondary distributions based on initial Gaussian
distributions with ps = —2.0, up = 2.0, and ¢ = 1.0.
We then generated observation samples using secondary
Gaussian distributions with ¢’s of 0.10, 0.20, and 0.30. As
shown in Figure 3, the voting system’s advantage over the
“optimal” classifier ranged from 1.13% to 16.02%. The
Bayes Risk in the simulation varied between 0.023 and
0.028, corresponding to initial recognition accuracies of

97.2% to 97.7%. These results seem consistent with the
experimental OCR data, cited earlier, that originally mo-
tivated our investigation.

Samples || Improvement Over Bayes Risk
(Voters) || 0 =0.10 | 0 =0.20 | 0 = 0.30
3 1.13% 5.24% | 10.12%
5 1.52% 6.55% | 13.09%
7 1.53% 718% | 14.40%
9 2.10% 7.65% | 15.44%
11 2.19% TTT% | 16.02%

Figure 3: Simulation results showing the effects of re-
peated sampling.

ANALYSIS I - GAUSSIAN NOISE
DISTRIBUTIONS

In this section we present a theoretical analysis of the im-
provement in the error rate achieved by repeated sampling
for a particular class of noise distributions: the pertur-
bance is independent of the hidden distribution p(x|C})
and has a probability density function that is a zero-mean
Gaussian.

Again, a two-class, one-dimensional problem is consid-
ered. Let p(x|A) and N(0,04) denote the probability
functions for the hidden and noise distributions for class
A, and p(x| B) and N(0,0p) denote the hidden and noise
distributions for class B, respectively. With no loss of gen-
erality, we assume that the Bayes decision boundary be-
tween the classes is located at x = 0. Thus, the classifier
assigns label A to an object if x is less than 0; otherwise
the label B is assigned.

For a particular object @ € A, say that the hidden value
of X is x,. Then the probability that a single sample falls
in the region X < 0, denoted P,, is

P,=Pr(x,+N<0)=

1 /0 - X;;S“ "
e X
V2 oy J—co

and the probability that x > 0is, of course, 1 — P,. We say
that object a is correctly recognized by the Bayes classifier
with probability P,.

It is obvious that if x, < 0, then P, > 0.5. Now suppose
that 2m + 1 independent observations of o are made. The
probability that a majority of them fall on the side x < 0



is characterized by the equation:

2m+1

B(Pom)= Y (Qmi“)Pz;u—Pa)?m“-f

i=m+1

form =1,2,.... It is easily demonstrated that ®(P,, m) >
P, whenever 0.5 < P, < 1. Consequently, if majority vot-
ing is used, there is an increased chance o will be classi-
fied properly. Moreover, the probability that « is correctly
recognized can be shown to approach 1 as m — oco. This
result implies that if we have x, < 0 for a given a, voting
can lead to perfect recognition, whereas the Bayes classi-
fier makes an error with probability 1 — P,. Over all a’s,
the asymptotic improvement voting can bring about for
class A is

0 o =%
C(A):/_Oop(x|A) [\/%UA/O ¢ % d&] dx (2)

On the other hand, if the hidden value lies on the wrong
side of the decision boundary, x, > 0, voting is likely to

produce the incorrect answer, while the Bayes classifier
might recognize a correctly (i.e., if the observation x hap-
pens to land on the right side, x < 0). The probability
this kind of “cross-over” occurs is

. L g0 -G
p. - / e % dx
2T oy

Since P, < 0.5, we have <I>(]3a,m) < P,, hence voting
decreases the chances of a being properly classified.

We refer to the situation where the Bayes classifier is
right but voting returns the wrong result as voting damage.
The overall damage induced by the voting scheme is upper-

bounded by

D)= [ ax] ) L%UA

The net asymptotic improvement in recognition accu-
racy, A(A), is then defined as the difference between Equa-
tions (2) and (3):

2 dfc] dx (3)

This can be expressed as

2/ (—x|A)— (x|A)][1—erf(UA\/_)]

erf(z \/_ /

See [7] for further details.

where
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Figure 4: Net improvement in recognition accuracy, A(A).

PROPERTIES OF A(A4) FOR
GAUSSIAN NOISE

In this section, we present two theorems regarding the net
improvement in recognition accuracy, A(A). The first ex-
presses A(A) as a function of the Bayes and intrinsic error
rates. The second shows that A(A) > 0 (i.e., repeated
sampling always reduces the number of errors) for com-
mon hidden distributions of interest.

Theorem 1 Let N be a Gaussian noise process. The net
improvement A(A) due to repeated sampling equals the
Bayes mis-classification rate minus the intrinsic error rate
of the recognition process:

A(A) = Pr(e| A) - /OOO (x| A) dx (4)

Proof: Owing to space limitations, we refer the reader
o [7] for the proof of this theorem.

This theorem implies that when the hidden distributions
for classes A and B are separable (i.e.,if [ p(x|A) = 0),
A(A) equals the Bayes Risk. In other words, we achieve

error-free recognition for class A.

Theorem 2 Let N be a Gaussian noise process. For com-
mon hidden distributions of interest, repeated sampling al-
ways yields a net improvement in recognition accuracy.

That is, A(A) >0

Proof: The proof is divided into three cases. First we
show that the theorem is true for all “bell-shaped” (e.g. ,
Gaussian) distributions. Then we prove that the result
holds for arbitrary distribution functions under certain
reasonable conditions.



Case 1 — Bell-Shaped Distributions.

A bell-shaped function f(z) is a non-negative function
satisfying the following property: f(ay) > f(az) if |21 —
p| < |za— |, where p is the highest (extreme) point of the
function. Now, suppose distribution function p(x|A) is
bell-shaped with g < 0. Then we have | —x — p| < |x —
for all x > 0, hence p(—x|A) — p(x|A) > 0. From the
definition of the error function erf(z), it should be clear

that 1 —erf (x/(UAﬁ)) is positive for all x > 0. Therefore,
A(A) > 0.

For the other two cases, we need to assume the following:

0 c
/ p(x|A)dx—/p(x|A)dx>0 Ye>0  (5)
—c 0

The term [°_ p(x | A) dx corresponds to the density of the
intrinsic value X in the interval [—¢, 0], the neighborhood
of size ¢ to the left of the decision boundary (i.e., inside
the region for class A). Similarly, the term [5p(x]|A)dx
is the density of X in the interval [0,¢], the same-sized
neighborhood to the right of the decision boundary (i.e.,
outside the region for class A). The condition states that
the density of X is always higher on the correct side of the
boundary than on the incorrect side. Intuitively, we can
see why this should be necessary: otherwise “cross-overs”
(e.g., case (3) in Figure 1) will happen more frequently,
meaning voting may do more harm than good.

Case 2 — Finite Support.

Suppose that the hidden distribution p(x | A) has finite
support. That is, p(x|A) = 0 for all |z| > Q, where Q
is a fixed positive value. This is a reasonable assumption
since real-world systems are finite. In this case, A(A) can
be written as

2/ —x|A)—p(x|A)] [1 — erf <UA)\(/§):| dx

By the Mean-Value Theorem, there exists a value 0 < w <
Q such that

AM) = G—ent(0) [lp(-x] 4) = px] 4))dx

= / -x|A) -
2

Since our assumption implies that [jp(—x|A)dx —
Jop(x|A)dx > 0 for all ¢ > 0 (Equation 5), we have
A(A) > 0.

p(x | A)]dx

Case 3 — Infinite Support.

Lastly, we consider the case where p(x| A) has infinite
support. We first show that repeated sampling performs
no worse than the original classifier (i.e., A(A4) > 0).

Consider the sequence of real-valued functions fy, fo,...
where

2/ x| A) - (x|A)][1—erf(UA\/_)]
Obviously, we have lim f,, = A(A).

Mean-Value Theorem, we know that for each f,, there
exists a value 0 < w,,, < m such that

f = /m -x|A)-—
2

Thus, using Equation 5, we have f, > 0.
A(A) > 0.

Finally, we can show there is always a net improvement
(i.e., A(A) > 0) if we make one more assumption: for any
given o4, there exists at least one real value r > 0 such
that

Again, from the

p(x | A)ldx

Therefore,

7,

2/ (—x|A)— (X|A)][1—erf<ﬁ)]dx20

When this is the case, A(A) can be written as

A(A):fr‘l‘gr

2/ x| A) - (x|A)][1—erf(UA\/_)]

From Equation 5 we know that F, > 0. Hence A(A) > 0.
a

where

It can be demonstrated that the final condition is satis-
fied by most hidden distributions of interest [7].

ANALYSIS IT - ARBITRARY
SYMMETRIC NOISE
DISTRIBUTIONS

The two theorems in the previous section can be extended
to more general classes of observation perturbances. In
fact, Theorems 1 and 2 remain true for any noise process
with a symmetric probability density function py(x|A)
that is independent of the hidden distribution.

Theorem 3 Let N be a random noise process with a sym-
metric distribution function py(X| A) independent of the
distribution of X. The net improvement A(A) due to re-
peated sampling equals the Bayes mis-classification rate
minus the intrinsic error rate of the recognition process:

A(A) = Pr(e| A) - /:Op(xm) dx

0



Proof: The proof is similar to the proof of Theorem 2.
The details are given in [7].

Theorem 4 Let N be a random noise process with a sym-
metric distribution function py(X| A) independent of the
distribution of X. If the following two conditions are sat-

isfied:

1. For all ¢ > 0,

Xo Xo+c
/p(x|A)dX—/ p(x| A)dx > 0

0—¢C X0

2. For any given pn(x| A), there exists at least one real
value r > 0 such that

/:O (p(—x|A) = p(x[A)) [/XOOpN(fc|A)d§<] dx > 0

o+7r

then repeated sampling always yields a net improvement in
recognition accuracy. That is, A(A) > 0.

Proof: The proof of this theorem can be found in [7].

BOUNDS ON A(A)

In this section, we provide estimates for upper and lower
bounds on the net improvement in recognition accuracy,
A(A). We start by giving a very general upper bound in
the case that py(x]| A) is fixed and symmetric.

Theorem 5 For any fized symmetric density function

py(X[4), A(4) < 3.

Proof: The proof of this theorem can be found in [7].

One scenario where the maximum A(A) is achieved
arises when the distribution of the hidden random vari-
able X is an impulse function centered very close to the
decision boundary, i.e., at Xx = Xg — €. It can be proved
that as € — 0, we have A(A) — 0.5.

When both pny(x]A) and p(x|A) are Gaussian distri-
butions, a lower bound can be shown. Suppose N(0,04)
and N (—p, 0g) are the density functions for py (x| A) and
p(x | A), respectively. Since X = X + N is the sum of two
independent Gaussian random variables, it follows that X
is also a Gaussian random variable with mean F{X+N} =
—u and standard deviation D{X + N} = UA? —I—O'SQ. In other
words,

A= —— o= (&Ktu)?/2(af +02)

p(x

Assuming the Bayes decision boundary is x = 0, by The-
orem 1 we can write A(A) as

A(A) = Pr(c|A)— /OOO (x| A)dx

N | —

) )

where erfc() = 1 — erf().
When p and ogg are both fixed and the perturbance gy
is small, i.e., gy < gg, the expression can be expanded as

Taylor series at —£ > and we obtain:
a5

_ 02 + 02 — o
A(A) > K22 va~T®s — %
v2m os\/of + &

Figure 5 shows the lower bound as a function of g4 com-
puted at gg = 1.0, p = 2.0 (solid curve). The actual net
improvement due to repeated sampling when there are 50
voters is shown as the marked curve in the same figure.
For small g4, the bound is quite tight.

0.014 | | | | | |
0.012
0.01
0.008 -
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lower bound —

!
0 0.050.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

Figure 5: Net improvement in recognition accuracy, actual
vs. lower bound.

EXPERIMENTAL RESULTS

In this section, we present some preliminary experimental
data that demonstrate the applicability of repeated sam-
pling.

As we noted previously, our OCR results show that a
significant percentage (i.e., 20-40%) of the residual errors
in an otherwise accurate system can be corrected through
repeated sampling. The extent to which this approach
can help with other recognition problems is a subject we
are currently investigating. Here we describe some early
results that illustrate the degree of random fluctuation in
the input data to a simple machine vision application.



The problem we have chosen to examine is deciding
whether a given coin is showing heads or tails. This is
a relatively challenging recognition task due to the highly-
reflective, sculpted surface of the coin (a U.S. 1 cent piece,
in our case). Figure 6 gives one of the test images from our
experiments. Our goals are two-fold: (1) to verify the in-
herent randomness of the input process, and (2) to test the
usefulness of repeated sampling in a real, albeit contrived,
application.

Since our focus is on repeated sampling, we have elected
to use a fairly “generic” recognition procedure. First,
a segmentation algorithm based on morphological opera-
tions is employed to break the image into subregions con-
taining individual coins. Once the coins are identified, we
compute from each image a set of moments as described
in [5]. This set is invariant with respect to size, position
(translation), rotation, and reflection. The moments are
taken as our features and provided as input to a simple lin-
ear classification algorithm. In a preliminary experiment,
we used 120 coin images (60 heads and 60 tails) as a train-
ing set, and then tested using a different set of 240 coin
images (120 heads and 120 tails). The overall recognition
rate was 87%.

Figure 6: Sample image of 12 coins.

To see the effects of the perturbance induced by the
imaging process, we sampled each coin three times. These
three snapshots were taken in rapid succession using a
Panasonic GP-MF200 camera without changing any set-
tings or moving the coins. For each coin, we computed
the mean of the feature vectors extracted from the three
snapshots as well as the maximum variance between the
mean and the vectors. Figure 7 shows the results calcu-
lated from the first two moments using 30 coins randomly
chosen from the test set. Each circle represents the max-
imum feature variance for a particular coin. The straight

line running through the plot is the decision boundary used
by our classifier. As the figure illustrates, the three snap-
shots yield significant variation in the computed feature
vectors; of the 25 coins represented in the region depicted,
five cross the boundary. The potential impact on recogni-
tion results, especially for feature vectors near the decision
boundary, is quite clear.

-0.2 1 1 1 1 1 1
1.4 1.6 1.8 2 2.2 2.4

Figure 7: Feature variation under repeated sampling.

CONCLUSIONS

In classical pattern recognition, the Bayes Risk serves as a
reference — a limit of excellence that cannot be surpassed.
In this paper, we have shown that by relaxing the assump-
tion that the input be sampled only once, a classification
system can be built that beats the Bayes error bound.

While our approach to improving recognition accuracy
makes use of voting, it is fundamentally different from
research on combining the outputs of multiple classifiers
(e.9., [2, 4]). Repeated sampling employs just a single
classifier, and hence enjoys an attractive property: since
there can only be one optimal classifier for a given set of
distributions p(C;) and p(%x|C;), there is no need to “com-
promise” by incorporating less-than-optimal recognizers in
the voting process.

Finally, in this paper we have treated the basic classifier
as a “black box” (e.g., in Figure 2). This has the advantage
of generality. However, when we know the structure of the
feature vector used as input, there is another, straightfor-
ward way to apply repeated sampling and “voting” prior



to the classification step. If, for example, the observation
noise is additive with zero mean, i.e., X = X + n, we can
build a system that simply takes the average X over a set
of successive measurements {X;}. and use the average x
as the input to the classifier. Averaging smoothes out the
noise in the observation process; it is easily shown that
P(ngnooi = x) = 1. We are now beginning to examine
the tradeoffs between these two approaches to repeated
sampling.
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