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Abstract

In this paper we consider the problem of
evaluating models for physical defects affecting
the optical character recognition (OCR) process.
While a number of such models have been pro-
posed, the contention that they produce the de-
sired result is typically argued in an ad hoc and
wmformal way. We introduce a rigorous and
more pragmatic definition of when a model s
accurate: we say a defect model is validated if
the OCR errors induced by the model are effec-
twely indistinguishable from the errors encoun-
tered when using real scanned documents. We
present two measures to quantify this similar-
ity: the Vector Space method and the Cown Bias
method. The former adapts an approach used
m information retrieval, the latter simulates an
observer attempting to do better than a “ran-
dom” guesser.
two techniques based on experimental data; both
seem to work well, suggesting this is an appro-
priate formalism for the development and eval-
wation of document image defect models.

We compare and contrast the
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1 Introduction

Traditionally, researchers performing large-
scale OCR, experiments have employed one or
more of the following approaches for generating
test data:

1. Real document images. In this case,
pages are printed and then scanned back
into the computer. The data is undeni-
ably authentic, but with an unfortunate
limitation — the results are not precisely
reproducible. Re-scanning a page mul-
tiple times yields a different document
image, and hence different OCR errors
each time. This natural variation is for
the most part uncontrollable, complicat-
ing later analysis. Under this model,
large-scale studies are an expensive, labor-
intensive proposition.

2. Public
databases.
lection of canonical images available to
a large number of researchers. This ef-
fectively addresses the problem of repro-
ducibility, but by moving to the other ex-
treme: the image for a particular page
is fixed in advance and looks exactly the
same every time it is processed.

domain document image

These make the same col-

3. “Perfect” document images. Here
the pages are generated electronically, in
memory, and are never rendered on a



physical medium (i.e., paper). These
kinds of images are often referred to as
perfect or ideal, meaning they exhibit none
of the damage real-world documents expe-
rience. OCR software run on such images
usually produces far better results than
for scanned images. Because real doc-
uments are never perfect, this approach
is somewhat artificial and can even re-
sult in anomalous behavior on the part
of the recognition software (in one set of
tests we performed, we encountered sev-
eral inexplicable, unintuitive OCR, errors
that never seem to occur in practice).

4. Document

images generated through the use of
defect models. The limitations of the
previous approach can be addressed by in-
jecting simulated noise into perfect docu-
ment images so that they more closely re-
semble real scanned data. Once a defect
model has been determined, test images
can be generated quickly, experiments be-
come easy to control, and results gain re-
producibility.

Several kinds of document defect models
have been proposed recently [Bai90, Bai93a,
KHP93]. Baird ([Bai90]) describes a param-
eterized model for local imaging defects; cali-
brations based on this model were investigated
later ([Bai93a]). Kanungo, et al ([KHP93])
present a model for the perspective distortion
that arises during the photocopying or scanning
of thick, bound documents and for the degra-
dation caused by perturbations in the optical
scanning and digitization processes.

Nonetheless, informal experiments have
shown us that although some models may gen-
erate images that look “real” to a human ob-
server, they yield error patterns quite differ-
ent from those seen when scanned pages are
OCR’ed. Clearly, a measure for expressing how
well a defect model simulates reality from the
standpoint of OCR, error behavior would have
tremendous value. The development of a the-
oretical framework for validating models that
provides a rigorous foundation for objective,
empirical, and computable criteria for demon-
strating their completeness was recently listed
as an open problem by Baird ([Bai93b]).

In this paper we propose two such meth-
ods for validating document defect models. The

first adapts a technique from information re-
trieval, the second takes a probabilistic ap-
proach. To examine the effectiveness of our
ideas, we printed, scanned, and OCR’ed six dif-
ferent copies of Herman Melville’s novel, Moby-
Dick, yielding 1.2 Gigabytes of TIFF bitmaps
(compressed), or 7 Megabytes of ASCII text.
Our methodologies, and the results of these
tests, are described in the sections that follow.

2 Defect Model Validation

Informally, we say that a document defect
model 1s validated with respect to a given font
and OCR package if it yields error patterns sim-
ilar to those seen for real scanned images. To
formalize this definition, we have developed two
ways of quantifying the similarity between two
sets of OCR error patterns:

Vector Space Method: For this measure we ap-
ply the Vector Space model from the field
of information retrieval ([Har92]). We
treat each OCR error pattern as a dimen-
sion in an error vector for the OCR out-
put. The dot product of two such vectors
gives the cosine of the angle formed by the
vectors. The closer this value is to 1, the
more similar are the two OCR, outputs.

Coin Bias Method: In this procedure we im-
plicitly model an observer watching the
errors produced by an OCR process and
“guessing” whether the original input was
a real scanned 1mage or a model-generated
image. If the observer cannot distin-
guish between the two cases with suffi-
ciently high probability, the defect model
is deemed accurate.

These two approaches will be described in
detail shortly, but first we point out that such
similarity measures can be used not only to val-
idate document defect models, but also to com-
pare OCR results from different experiments in-
volving scanned images. Since tests using real
data are not precisely repeatable, similarity cal-
culations between different sets of results allow
us to quantify how much natural variation to
expect.

Later we shall use this intuition to demon-
strate the effectiveness of our validation pro-
cedures. In particular, we present OCR er-
ror characteristics for large amounts of data



printed and scanned in three different fonts.
One would expect that data drawn from related
distributions, for instance identical pages of text
printed in the same font and then scanned and
OCR’ed, would exhibit similar error character-
istics. We show that our validation techniques
capture these similarities quite nicely. Likewise,
our approaches detect that error characteristics
drawn from unrelated distributions, for instance
pages printed in two different fonts, should not
appear to be similar.

The general framework we envision for doc-
ument image defect model validation is pre-
sented in Figure 1.
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Figure 1: The document image defect

model validation process.

As depicted in the figure, we start from an
on-line reference text. In the case of the con-
trol, shown on the left side of the diagram, the
text is printed and scanned, thus introducing
noise. During printing, for instance, toner can
“sputter” or the paper might jam briefly. Like-
wise, during scanning, uneven illumination, fi-
nite sampling, and binarization further distort
the document 1mage.

On the right side of the figure, electronic
text is transformed into a page image without
ever having been rendered on paper. The de-
fect model under study is then applied to mimic
real-world damage.

When the two sets of document images are
OCR’ed, they exhibit their own unique error
characteristics. The similarity between these er-
ror patterns is calculated by the validation pro-
cedure. If the value returned indicates a close
enough match, the defect model is considered
validated, otherwise it fails.

The next section presents our two ap-
proaches to quantifying OCR error-set similar-
ity.

3 Validation Measures

The techniques described in this section each
work independently based on OCR error char-
acteristics. As a first step, the ASCII output is
processed to identify any OCR errors that may
have occurred. These are classified as belong-
ing to one of six categories: deletions, inser-
tions, 1:1 substitutions, 1:2 substitutions, 2:1
substitutions, and 2:2 substitutions. We use an
approach based on the standard string edit dis-
tance model, modified to account for the special
kinds of errors inherent to OCR, as described
elsewhere [ELSZ94, Lop94]. Table 1 shows some
examples from our experiments.

3.1 The Vector Space Method

The Vector Space Model 1s widely used in infor-
mation retrieval to measure the similarity be-
tween two documents or between a query and
a document [Har92]. In this approach, a docu-
ment is represented by a vector of index terms
or keywords. If an index term or keyword is
present in a particular document, the corre-
sponding element of the vector is set to 1; oth-
erwise, it is set to 0. The similarity between
a query and a document or between two docu-
ments is calculated by the inner product of the
term vectors. Weighted vector inner products
can be obtained through various term weight-
ing methods. Such a vector matching opera-
tion, based on the cosine of the angle between
vectors, 18 sometimes called cosine similarity.



1:1 Sub  1:2 Sub  2:1 Sub  2:2 Sub  Insertion  Deletion
Original Text  bar and flourish  forward  were in her,
OCR Output  bat ancl Bourish foMlard were 1in  her
Error Pattern r—t d—-cl f—B rw—MI () — (sp) ,—()

Table 1: Example OCR error patterns.
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The Vector Space Model has also been used
recently in conjunction with OCR in a system
that extracts keywords from an OCR’ed docu-
ment and builds a vector whose elements rep-
resent the frequency of a particular keyword in
the document. The document is then “classi-
fied” by searching through a database for simi-
lar keyword vectors, using weighted cosine sim-
ilarity [HL93].

For our application, OCR error analysis and
the validation of defect models, we assume that
the total number of possible error patterns is
n. An output set can then be represented by
a vector V = (vgl), .. .,vgll)), where the value
of v; 1s the number of errors of type i. That
is, the weight of the i** dimension is equal to
the frequency of this error pattern in the test
data. Then the cosine similarity between the
two error vectors of interest V(1) and V(2 is
calculated as:

RO RRTAC)

sim(V(l), ‘7(2)) = . T =
V]V

n

3 (140 )

k=1

ORI

where:

VI =

As an example, consider the error vectors
shown in Table 2. Here sim(v(l),v(z)) =
0.9749. Note that characters recognized cor-
rectly are also considered an “error” in the case
of 1:1 substitutions such as {a—a} or {b—b}.
Doing so allows us to calculate the similarity
between the original text, which contains no er-
rors, and an erroneous OCR, output.

3.2 The Coin Bias Method

As before, the goal is to quantify the similarity
between two OCR error distributions. Again we
shall assume we have two vectors representing
the distributions over n possible error patterns:

v = (vgl), e v£}>)

V2 = <U§2)’ e v£f>)

The intuition for the Coin Bias method is
as follows: suppose an observer has full infor-
mation about the errors that result under each
of the two distributions. Now say we secretly
choose either distribution V(1) or distribution
V(2 at random, generate OCR errors accord-
ingly, and show them to the observer. The ob-
server’s “assignment” is to guess which distri-
bution is being used to generate the data.

For instance, suppose V) s highly likely
to produce the error {a—o}, but V(2 almost
never does. An observer shown this error would
probably be justified in guessing that V1) was
being used.

For any particular error, the observer knows
which distribution is more likely to make it and
can guess accordingly. Therefore, we judge that
the two distributions are similar if the observer
can do little better than random at telling them
apart. If the vectors are identical, for example,
the observer will always be presented with an
error that is equiprobable under both scenar-
108. Since a random guesser will be right with
probability 0.5, a “similarity” value of 0.5 rep-
resents perfect validation of a defect model.

We now make this intuition more formal.

3.2.1 Formal Description of the Model

OCR error distributions are represented as n-
dimensional vectors. Each element of the vec-
tor corresponds to a particular error pattern,
and the value of the element is the probability
of that error occurring. This differs somewhat



Pattern a—ma a—0 b—b b—B m—m m-—rn un—"m un —rm
v ( 38 2 8 5 5 5 2 1 )
V() (10 0 9 4 6 4 3 0 )

Table 2: Example of OCR error vector representation.

from our Vector Space method, where the value
of the element is the frequency of the error. For
example, a 2-dimensional vector (2, 6) would be

normalized to {0.25,0.75).

We make the simplifying assumption that
the errors are independent. While this is not
strictly true in real life, the correlations in the
data are likely to be weak and so we should see
a close approximation of the correct similarity
value. At the expense of complicating the anal-
ysis, we could always make our error vectors
more general to take local correlations into ac-
count.

Since we have assumed the errors are inde-
pendent, we can summarize the probability of
an observer guessing correctly by asking the fol-
lowing simplified question: if shown one error,
chosen at random, what is the probability the
observer will guess the distribution correctly?

An error of type ¢ will be shown to the ob-
server with probability 1/2(1}2(»1) + vl(»z)). The
only reasonable strategy for the observer is to
guess V() if vl(»l) > ng) and V) otherwise.

Next, note that the observer will be right
when shown an error of type ¢ with probability:

max{v}"), o/}

UZ('l) + 02(2)

So the total probability p of the observer being
right is:

Pr[(correct guess on )]

L@ | yf2) max{v"), o{*}
G I el

(max{v(l), 2(2)})

1
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3.2.2 Examples

Consider the two possible patterns {a — a}
and {a — o}. If the two vectors are:

vV = (1,0) V) = (1,0)
then we have sim(v(l), 17(2)) = 0.5. Since the
two distributions are identical, the observer has
no advantage in guessing the answer and hence

will be right half the time.
If, on the other hand, the vectors are:

v =(1,0)

then the first distribution always maps a to a
and the second distribution always maps a to
o, so the observer knows with certainty which
distribution produced a particular pattern. In
this case, the probability returned is 1 and the
defect model is deemed essentially useless.

As an intermediate example, consider the
following:

vV =(0,1)

V) = (0.4,0.6) V(2 =(0.35,0.65)
In this case, sim(v(l),v(z)) = 0.525, so the
observer will guess correctly 52.5 times out of
every 100, appreciably better than random.

We should point out one underlying as-
sumption in the discussion so far. The Coin
Bias method is Bayesian, so we have implicitly
assumed that the data being used derives from
real scanned images with probability 0.5, and
from document defect models with probability
0.5. If these “prior probabilities” were differ-
ent, the observer’s strategy could be changed
trivially to reflect this knowledge.

3.2.3 Multiple Trials

We have distilled the relationship between two
sets of OCR error patterns to a single value p,



the probability that an observer will guess cor-
rectly which process generated a randomly cho-
sen error. But understanding the significance of
the difference between two such similarity val-
ues, say 0.50005127 and 0.50089613, is difficult
without some additional intuition. We propose
the following technique to illustrate the bias in
a more meaningful way.

The similarity p of two distributions gives
the probability that the observer, on being pre-
sented with a single example, will guess cor-
rectly which distribution was used to gener-
ate 1t. So, in effect, the observer represents a
coin with bias p and we can equate “flipping”
the coin with seeing an OCR error pattern and
guessing its source.

Suppose that instead of being shown a sin-
gle example, the observer is shown a sequence
of error patterns, and answers V) or V() af-
ter each one, according to the strategy just de-
scribed. As we know, each guess is correct with
probability p. Thus, after seeing 73 answers of
VMand 27 answers of 17(2), we would logically
assume that VV(Vis the correct response. In this
case, after seeing 100 error patterns, split 73-
27, we can be fairly sure of our answer. We
now ask the question: in general, how many
patterns must the observer see to make a deci-
sion? For instance, if p = 0.95 only a few coin
flips are required, while if p = 0.50001 we might
very well see 100 coin flips and still have no idea
which answer is correct. We now show how to
determine the number of patterns the observer
must see in order to be able to make a good
guess.

Say a coin of bias p exists, but it is not
known whether the bias is for heads or tails.
The object is to determine on which side the
bias lies. Clearly, if the coin is flipped 100 times
and falls heads 51 times; the most reasonable
guess is that the bias is towards heads. For a
particular bias p, it is simple to calculate the
probability that flipping the coin 100 times and
voting with the majority will actually guess cor-
rectly.

The number of times the coin comes up
heads will be distributed as a Gaussian cen-
tered, slightly to the right of center if the coin
is biased towards heads, and slightly to the left
of center if the coin is biased towards tails. We
must assure that these Gaussians are disjoint
for most of their area. Assume we flip the coin
n times. If the bias is for heads, the number of

heads is expected to be np, and we must show
that if we travel k& standard deviations from the
expectation, we will not have crossed the “half-
way point” to fewer than n/2 heads. So:

np—1/2) > k-o
n(p—1/2) > kvnp(l—p)
nz(p — 1/2)2 > kznp(l -p)
n ~ Ke(l-p)
(r—1/2)*

We report the value of n to give a more con-
crete measure of the similarity between OCR
error distributions.

In the previous section we gave an example
of two distributions with p = 0.525. Using our
visualization technique, this corresponds to 399
coin flips to be fairly certain we choose correctly.
For a more accurate defect model, we might not
be certain until we have seen 1000 coin flips; for
a less accurate defect model, 100 coin flips might
suffice.

We should point out that this value does not
correspond to the amount of data needed to dis-
tinguish two distributions with high accuracy,
as the result of each comparison is not a simple
“yes” or “no”, but a probability we are seeing
a particular distribution. If this probability is
1.0, then clearly we are absolutely certain and
need perform no further tests. This value corre-
sponds to the situation in which the observer is
allowed to guess vV or 17(2), but is not allowed
to include a confidence indicator along with the
guess.

4 Experimental Results

We used an on-line version of the novel Moby-
Dick by Herman Melville to generate page im-
ages which we then OCR’ed. The ASCII text
occupies 1.2 Megabytes of storage, and when
printed in 10-point Times fills 318 pages at 48
lines per page. The OCR software we employed
was OCRServant running on a NeXT computer.
Our basic character recognition accuracy was
around 99.8% for “real” images produced by
printing a page on a 400 dpi laserprinter and
then scanning it back in using a Ricoh 1S410
high-speed scanner at 300 dpi.



4.1 Error Analysis

We first investigated the similarity between er-
ror sets generated by OCR’ing different ver-
sions of Moby-Dick. Test cases were created
by modifying several parameters of the print-
ing/scanning process. Pages were printed in
three different fonts: Times, Courier, and Hel-
vetica. FEach font was printed and scanned
twice. Since a complete copy of the novel to-
tals 318 pages, approximately 2,000 pages of
10-point characters were printed, scanned, and
OCR’ed in all. Errors were classified into the
previously discussed categories: deletions, in-
sertions, and 1:1, 2:1, 1:2 and 2:2 substitutions.
Our two similarity measures were calculated for
each type of error. For the Coin Bias method,
we computed both the probability p, and also
the number of times a biased coin would have
to be flipped in order to differentiate between
the two sources with high probability.

Table 3 shows the similarity matrices for 1:1
substitutions for six versions of scanned Moby-
Dick images in three different fonts. Timesl
represents the first copy processed using Times,
Times2 the second, etc. We shall employ this
same naming convention throughout the re-
mainder of the paper. The similarity between
identical versions (e.g., Timesl and Timesl) is
always 1.0 for the Vector Space method and 0.5
for the Coin Bias method. Since the tables are
symmetric, we need only show the upper half.

Because the OCR process is generally very
accurate and we count correctly recognized
characters along with the 1:1 substitutions, the
similarity values are very close to 1.0 for the
Vector Space method and 0.5 for the Coin Bias
method. However, it 1s also quite evident that
both schemes compute values several order of
magnitude closer to these limits for test data
based on the same font than for different fonts.
This is precisely as expected.

We now consider the similarity matrices for
1:2, 2:1 and 2:2 substitutions for the six ver-
sions of Moby Dick. This data is presented in
Tables 4, 5 and 6.

1:2 and 2:1 substitutions account for so few
error patterns that different fonts may have
nothing in common, thus we see numerous low
similarity values in the tables. Different ver-
sions using the same font still have high similar-
ity values, ranging in the Vector Space method
from 0.55 to 0.99, except that 2:1 substitu-

tions in Courierl and Courier2 share no com-
mon error patterns. In fact, Courierl has only
two 2:1 substitutions: {my—~} and {ux—w},
while Courier2 has four patterns: {Wh—"},
{ma—(sp)}, {nn—M}, and {o.—0}.

2:2 substitutions are more informative; each
font has an assortment of error patterns ranging
from 24 (Helvetical) to 68 (Timesl). Times and
Helvetica have a number of errors in common,
but Courier errors are quite distinctive.

The overall similarity matrices (Table T),
combining the results for all types of substitu-
tions, are dominated by the 1:1 case because of
their much greater frequency.

Note that for the two most representative
cases, 1:1 substitutions and overall substitu-
tions, there are easily chosen thresholds that
separate the results for a particular font from
the results for all other fonts. For the Vec-
tor Space method, all similarity values greater
than 1 — 1075 are for the same font, and all
other values are for different fonts. Likewise for
the Coin Bias method, all distributions requir-
ing over a million coin flips to differentiate are
for the same font, and all smaller values are for
different fonts. The fact that these classes are
so well separated leads us to believe that both
of our measures are appropriate for use in vali-
dation procedures, as outlined in Section 2.

4.2 Evaluation of a Defect Model

In this section we describe the results of apply-
ing our validation techniques to a simple docu-
ment image defect model we have developed.

Skew, smear, blur, thickening, and thinning
are some of the common defects observed dur-
ing the printing and scanning process. Our ap-
proach is to develop a model for each kind of
defect in isolation, then combine them together
in a parameterized fashion. Individual defect
models are often page based. For example, skew
is a rotation of certain blocks in the document
image; a block can be the whole page or part of
the page (as might be caused by optical distor-
tion or a misfeed during scanning). The same
character at different locations on a page may
suffer from varying amounts of distortion, of any
of a number of forms.

Figure 2 shows an image generated by the
smearing defect model.

We noticed that if we set the binarization
threshold to the halfway point (128 in a [0,255]



Vector Space Method
|| Timesl | Times2 | Helvetical | Helvetica2 | Courierl | Courier2

Timesl1 1.0 0.99999994 | 0.999995 0.999995 0.999993 | 0.999993

Times2 1.0 0.999994 0.999994 0.999993 | 0.999993

Helvetical 1.0 0.99999998 | 0.999997 | 0.999997

Helvetica2 1.0 0.999997 | 0.999997

Courierl 1.0 0.99999996

Courier2 1.0

Coin Bias Method
|| Timesl | Times2 | Helvetical | Helvetica2 | Courierl | Courier2

Timesl (c0) 0.5 | (L7m) 0.5001 | (351k) 0.5008 | (362k) 0.5008 | (252k) 0.501 | (248K) 0.501
Times2 (c0) 0.5 (338k) 0.5008 | (347k) 0.5008 | (249k) 0.501 | (246Kk) 0.501
Helvetical (c0) 0.5 (58m) 0. 5001 (673k) 0.5006 | (611k) 0.5006
Helvetica2 (c0) 0 (676k) 0. 5006 (603k) 0.5006
Courierl (c0) 0 (27m) 0. 5001
Courier2 (c0) O

Table 3: Similarity matrices for 1:1 substitutions in three fonts.

theouet

Figure 2: Smearing model effect.

range) during scanning, the bilevel image usu-
ally looked darker than the original, suggesting
that more white pixels were changed to black
than vice versa. To us, this effect seemed to be
the only consistent, visible one when using small
font sizes (e.g., 10-point). This observation mo-
tivated the development of our defect model,
which adds three types of distortion: smooth-
ing, thickening, and smearing. Smoothing and
thickening were implemented by averaging each
pixel by its neighbors with a threshold chosen to
favor black pixels. Smearing was simulated by
randomly repeating certain black pixels around
the character border. Figure 3 shows a por-
tion of a page generated by our model. Al-
though this image may appear almost “perfect,”
it results in OCR accuracy rates comparable to
those encountered using real data.

We tested our defect model using the val-
idation techniques described earlier. For this
experiment, we rendered Moby-Dick electron-
ically in 10-point Times and passed the page

images through our combined defect model. In
the following we refer to this data set as Mod-
elT. The base OCR accuracy was 99.7% — on
visual inspection, the error patterns seemed to
be reasonable. We now apply the methods of
the previous sections for a more rigorous anal-
ysis.

From Table 8, we see that the defect model
yields fairly reasonable results for 1:1 substi-
tutions, but does less well for the other cate-
gories. For one obvious criterion, we would like
the model to produce similarity values close to
those calculated for two different printed ver-
sions of the document. A quick comparison of
Tables 7 and 8 shows this is clearly not the case
for the current implementation.

While this may sound discouraging from the
standpoint of the simple defect model we de-
scribed, the important point i1s that our val-
idation procedures allowed us to quantify the
performance of the model. The value of these
methods extends beyond providing a simple
“pass” or “fail” evaluation; they can be used
to provide continual feedback as the model is
tuned to produce more realistic results. We are
now working on an improved version of our doc-
ument image defect model.



Vector Space Method
|| Timesl | Times2 | Helvetical | Helvetica2 | Courierl | Courier2
Timesl1 1.0 0.866885 0.0 0.0 0.140160 0.163821
Times2 1.0 0.010784 0.0 0.0679067 | 0.043135
Helvetical 1.0 0.551268 0.0 0.0
Helvetica2 1.0 0.0 0.0
Courierl 1.0 0.775826
Courier2 1.0
Coin Bias Method
|| Timesl | Times2 | Helvetical | Helvetica2 | Courierl | Courier2
Timesl (c0) 0.5 | (11) 0.706 | (1) 1.0 (1) 1.0 (4)0.952 | (4) 0943
Times2 (c0) 0.5 (4)0.994 | (1) 1.0 (4)0.982 | (4) 0.969
Helvetical (c0) 0.5 (6) 0.836 (1) 1.0 (1) 1.0
Helvetica2 (c0) 0.5 (1) 0.999 (1) 0.999
Courierl (c0) 0.5 (9) 0.733
Courier2 (c0) 0.5

Table 4: Similarity matrices for 1:2 substitutions in three fonts.

5 Conclusions

In this paper, we defined the defect model vali-
dation problem and proposed two different eval-
uation methods. We said that a document im-
age defect model is validated if the OCR error
patterns it induces are similar enough to those
seen for real printed, scanned pages.

Both of our similarity measures are based on
an error classification scheme that categorizes
OCR errors as deletions, insertions, and 1:1, 2:1,
1:2 and 2:2 substitutions.

The Vector Space method considers each er-
ror pattern as a dimension of a vector that rep-
resents the recognition result. The inner prod-
uct of two such vectors gives the similarity value
between two sets of outputs. Normalized inner
products generate similarity values in the range
[0,1]: 0 for totally different results, and 1 for
identical results.

The Coin Bias method, on the other hand,
calculates the probability of successfully differ-
entiating two recognition results, given a single
error chosen at random from one of the two dis-
tributions. Such a “guess” is a probability based
on the frequency of each error pattern in each
error vector. If the overall probability is close to
0.5, 1t is difficult to differentiate the two recog-
nition results; if the probability i1s close to 1,
they are not similar. We also showed how to
calculate the number of times the coin must be

flipped in order to be certain which distribution
is being presented — larger numbers of coin flips
correspond to more similar distributions.

We tested our methods on a large corpus
of data drawn from the novel Moby-Dick. The
results of these experiments confirmed our in-
tuition that the Vector Space and Coin Bias
methods are reliable indicators of error pattern
similarity, and may have significant value in a
document image defect model validation proce-
dure.

This research is continuing, both in the area
of defect model development and validation,
and in the in-depth analysis of OCR error pat-
terns.
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Vector Space Method
|| Timesl | Times2 | Helvetical | Helvetica2 | Courierl | Courier2
Timesl1 1.0 0.998564 | 0.003146 0.003919 0.0 0.0
Times2 1.0 0.000266 0.000729 0.0 0.0
Helvetical 1.0 0.834058 0.0 0.0
Helvetica2 1.0 0.0 0.0
Courierl 1.0 0.0
Courier2 1.0
Coin Bias Method
| | Timesl | Times2 | Helvetical | Helvetica2 | Courierl | Courier2
Timesl (co) 05 | (242) 0534 | (4)0.997 | (4) 0.998 | (1) 1.0 | (1) 1.0
Times2 (c0) 0.5 (4)0.999 | (4)0999 | ()10 | (1)10
Helvetical (c0) 0.5 (9) 0.741 (1) 1.0 (1) 1.0
Helvetica2 (c0) 0.5 (1) 1.0 (1) 1.0
Courierl (c0) 0.5 (1) 1.0
Courier2 (c0) 0.5

Table 5: Similarity matrices for 2:1 substitutions in three fonts.
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Vector Space Method
|| Timesl | Times2 | Helvetical | Helvetica2 | Courierl | Courier2
Timesl1 1.0 0.977272 0.720648 0.709578 0.001677 | 0.001484
Times2 1.0 0.633684 0.623868 0.001815 0.000674
Helvetical 1.0 0.987835 0.005109 | 0.004112
Helvetica2 1.0 0.005662 0.004557
Courierl 1.0 0.972004
Courier2 1.0
Coin Bias Method
|| Timesl | Times2 | Helvetical | Helvetica2 | Courierl | Courier2
Timesl (c0) 0.5 | (24) 0.625 | (6) 0.824 | (6) 0.828 | (4) 0.990 | (4) 0.990
Times2 (c0) 0.5 (6)0.831 | (6)0.835 | (4)0.993 | (4)0.994
Helvetical (c0) 0.5 (49) 0. 583 (4) 0.986 | (4) 0.987
Helvetica2 (c0) O (4) 0.989 (4) 0.990
Courierl (c0) 0.5 (19) 0.644
Courier2 (c0) 0.5

Table 6: Similarity matrices for 2:2 substitutions in three fonts.

Vector Space Method
|| Timesl | Times2 | Helvetical | Helvetica2 | Courierl | Courier2

Timesl1 1.0 0.99999991 0.999994 0.999994 0.999992 | 0.999992
Times2 1.0 0.999993 0.999993 0.999992 | 0.999992
Helvetical 1.0 0.99999997 | 0.999997 | 0.999997
Helvetica2 1.0 0.999997 | 0.999997
Courierl 1.0 0.99999997
Courier2 1.0

Coin Bias Method

|| Timesl | Times2 | Helvetical | Helvetica2 | Courierl | Courier2
Times1 (c0) 0.5 | (6m) 0.5002 | (215Kk) 0.5010 (220k) 0.5010 | (163k) 0.5012 | (158k) 0.5012
Times2 (c0) 0.5 (199k) 05011 | (203k) 0.5011 | (154k) 0.5012 | (151k) 0.5013
Helvetical (c0) 0.5 (33m) 0. 5001 (527k) 0.5007 | (468k) 0.5007
Helvetica2 (c0) 0 (530k) 0. 5007 (466k) 0.5007
Courierl (c0) O (15m) 0. 5001
Courier2 (c0) 0

Table 7: Similarity matrices for all substitutions in three fonts.
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its height, this man slipped away unobserved, and I saw no more of him till he
became my comrade on the sea. In a few minutes, however, he was missed by his
shipmates, and being, it seems, for some reason a huge favorite with them, they
raised a cry of Bulkington! Bulkington! where’s Bulkington? and darted out of
the house in pursuit of him. It was now about nine o’ clock, and the room seeming
almost supernaturally quiet after these orgies, I began to congratulate myself
upon a little plan that had occurred to me just previous (o the entrance of the
seamen. No man prefers (o sleep two in a bed. In fact, you would a good deal
rather not sleep with your own brother. I don’t know how it is, but people like

to be private when they are sleeping. And when it comes to sleeping with an
unknown stranger, in a strange inn, in a strange town, and that stranger a
harpooneer, then your objections indefinitely multiply. Nor was there any

earthly reason why I as a sailor should sleep two in a bed, more than anybody

Figure 3: Test document image with model-generated defects.

Vector Space Method
ModelT | | Timesl | Times2 | Helvetical | Helvetica2 | Courierl | Courier2
1:1 0.99999656 | 0.99999651 0.99999519 | 0.99999515 | 0.99999431 0.99999431
1:2 0.018203 0.004540 0.0 0.0 0.062432 0.107517
2:1 0.875737 0.878735 0.0 0.0 0.0 0.0
2:2 0.017742 0.002532 0.0 0.00539 0.002292 0.001640
all 0.99999567 | 0.99999550 | 0.99999461 0.99999456 | 0.9999937 0.9999937

Coin Bias Method

ModelT || Timesl | Times2 | Helvetical | Helvetica2 | Courierl | Courier2

1:1 subs || (474k) 0.5007 | (478k) 0.5007 | (295k) 0.5009 | (295k) 0.5009 | (243k) 0.5010 | (234k) 0.5010
1:2 subs (4) 0.976 (4) 0.991 (1) 1.0 (1) 1.0 (4) 0.964 (4) 0.967
2:1 subs (8) 0.757 (8) 0.753 (1) 1.0 (1) 1.0 (1) 1.0 (1) 1.0
2:2 subs (4) 0.981 (4) 0.994 41) 0.999 (4) 0.999 (4) 0.991 (4) 0.995
all (187k) 0.501 | (178k) 0.501 | (203k) 0.501 | (204k) 0.501 | (172k) 0.501 | (163k) 0.501

Table 8: Similarity matrices for model results and scanned results.
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