Issues in Automatic OCR Error Classification

Jeffrey Esakov, Daniel P. Lopresti,
Jonathan S. Sandberg and Jiangying Zhou

Matsushita Information Technology Laboratory
Panasonic Technologies, Inc.
Two Research Way
Princeton, New Jersey 08540

Abstract

In this paper we present the surprising
result that OCR errors are not always uni-
formly distributed across a page. Under cer-
tain circumstances, 30% or more of the er-
rors incurred can be atiributed to a single,
avoidable phenomenon in the scanning pro-
cess. This observation has important ram-
ifications for work that ezplicitly or implic-
itly assumes a uniform error distribution.
In addition, our ezperiments show that not
just the quantity but also the nature of the
errors is affected. This could have an im-
pact on strategies used for post-process error
correction.

Results such as these can be obtained
only by analyzing large quantities of data
in a controlled way. To this end, we also
describe our algorithm for classifying OCR
errors. This is based on a well-known dy-
namic programming approach for determin-
ing string edit distance which we have ez-
tended to handle the types of character seg-
mentation errors inherent to OCR.

1 Introduction

Fully automated OCR promises a tremen-
dous cost savings over the current labor-
intensive process, yet 100% accuracy still

. remains an elusive goal. Aged books, noisy

multi-generation photocopies and faxes,
non-standard text layouts, damaged origi-
nals, and handwritten mark-up are topics
for advanced research. Even in the case
of a clean source document, problems such
as accounting for white space and disam-
biguating between nearly-identical charac-
ters seem fundamentally hard. A large
amount of research has been directed to-
wards improving OCR accuracy.

To further improve performance, it is
necessary to qualify as well as to quantify
the precise nature of OCR error sources.
For example, error detection/correct strate-
gies such as dictionary hashing [4] and the
Certifiable OCR idea proposed in [6] re-
quire that the post-processor have detailed
knowledge about the types and the charac-
teristics of errors likely to be made by the
OCR process. Such information can be ob-
tained only by studying a large amount of
data in a systematic way. It is thus impor-
tant to develop means for identifying and
classifying OCR errors automatically.

In a previous paper [3] we described
the nature of OCR errors generated by the
OCR package for particular fonts as well as
the relationship between error sets for dif-
ferent fonts. In this paper, we examine the .
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effect of scanning process on OCR accuracy.
We find that there exists a significant differ-
ence in OCR performance under controlled
conditions when taking inputs from two dif-
ferent types of scanners. We show that cer-
tain OCR errors are not characteristic of
a particular font or OCR process, but are
instead induced by physical failures in the
image acquisition process. Our results sug-
gest that to evaluate OCR systems faith-
fully, one must pay close consideration the
scanning procedure. Such effects seem to
have been overlooked in previous research.

Our algorithm for classifying OCR er-
rors is based on a new variation of the dy-
namic programming algorithm described in
[3]. We extend the algorithm to identify not
only isolated errors in strings (i.e. single
symbol substitutions, deletions and inser-
tions), but also more complex errors involv-
ing multiple characters up to an arbitrary
but pre-determined size.

Our approach to classifying OCR errors
is presented in Section 2. In Section 3, we
describe the procedure we followed in per-
forming a large-scale experiment. Section 4
discusses the results of this study. Finally,
we offer our conclusions in Section 5.

2 Automatic Classification
of OCR Errors

Various forms of approximate string match-
ing have been used by other researchers
for the purpose of classifying OCR errors
[1, 2, 7, 8, 9]. Our approach is similar in
that we formulate the problem as an edit
distance computation, but fundamentally
different in the way we have extended the
algorithm to handle character segmentation
errors.

The relationship between two similar,
but not necessarily identical, strings can be
made mathematically precise using an edit
model. In the traditional case [10], the fol-
lowing three operations are permitted:
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a. delete a single character,
b. insert a single character,
c. substitute one character for another.

FEach of these operations is assigned a
cost, Cdel, Cins, and Csup, and the minimum
cost of any sequence of basic operations
that transforms one string into the other is
called the edit distance. This optimization
problem can be solved using a well-known
dynamic programming algorithm. Let § =
$1...Sm be the source (original) string, and
T = t;...t, be the target (OCR) string.
Define d; ; to be the distance between the
first ¢ characters of S and the first j charac-
ters of 7. The main dynamic programming
recurrence is then:

{ di—1j + caer(si)

di,j = min di,j—l -+ Cins(tj) (1)
di—1,j-1+ Csub(si,t;)

for 1 <i< m,1<j<n. When Equation
1 is used as the inner loop step in an im-
plementation, the time required is O(mn)
where m and n are the lengths of the two
strings.

If, in addition, the choices that lead to
the minimums above (i.e., the optimal deci-
sions) are also recorded, the resulting trace-
back table provides a sequence of operations
that perform the transformation in question
(a trace-back table is shown in Figure 1).

- For the OCR problem, these edits can be

equated with the errors in the OCR string.
For example, if all editing operations are
assigned a cost of 1, the edit distance be-
tween the strings “Call me Ishmael.” and
“Callmc Ishma,el.” is 3, and the sequence
of optimal edits is “delete space,” “substi-
tute c for e,” and “insert comma.”

There may, in fact, be more than one
optimal edit path (and hence error classi-
fication) for a given pair of strings. The
computation corresponding to

“Call me Ishmael.” = “Cal me Ishmael.”
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has two optimal paths depending on which
“]” is selected for deletion. From the stand-
point of having minimal cost, any such path
is as plausible an explanation for what hap-
pened during the OCR process as another.
Note that it is also quite conceivable that
human experts will disagree on a particular
classification. Some degree of ambiguity is
perfectly natural and not necessarily a mat-
ter for concern.

While the editing operations (a)-(c)
listed above are sufficient for describing the
relationship between any two strings, there
is an important phenomenon inherent to
OCR that they do not capture: the notion
of a segmentation error. Consider the case
of

“Call me Ishmael.” = “Call me Ishmael”

The error pattern “m” = “rn” is treated as
an insertion and a substitution under Equa-
tion 1, as well as by many of the other mod-
els proposed in the literature. For our pur-
poses, however, it would be more accurate
to treat this as a single error event, which
we call a multi-substitution (or multi-sub for
short).

We have developed a new formalism to
handle multi-subs. The three traditional
operations are replaced by a single gener-
alized operation, the p:g substitution:

1. substitute ¢ characters for p charac-
ters.

(a)-(c) then become 1:0, 0:1, and 1:1
substitutions, respectively. The error that
motivated this discussion, “m” = “rn”, is
a 1:2 substitution. The cost of substitut-
ing q characters i; . . .tj4q—1 for p characters
8i ... Sitp-1 is:

csubp:q(s,' erSiqp—1,t5.- .tj+q_1)

and is a function of both p and ¢ as well as
of the characters in question.

In an earlier paper [3], we described
an extension of Equation 1 to handle the
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case 1 < p,q < 2. This is still too lim-
iting as multi-subs involving three charac-
ters (e.g., “m” = “ril”) and four characters
(e.g., “rw” = “n;cl”) commonly occur in
practice. Equation 2 presents a more gen-
eral form of the dynamic programming re-
currence capable of accounting for arbitrary
multi-subs. '

di,]‘ = min [di_g,j_h+
Csubg:h(si e Sigge1,ti .- .tj+h~1) (2)
|0<g<p,0<h< ]

for1<i<m,1<j<n

This expanded recurrence requires time
O(mnpq) where m and n are the lengths of
the two strings and p and ¢ determine the
maximum allowable size of a multi-sub.

As before, saving the optimal decisions
as d; ; is computed makes it possible to enu-
merate the OCR errors after the edit dis-
tance phase of the algorithm completes. An
example of a trace-back table is shown in
Figure 1.

As written, Equations 1 and 2 allow
the editing costs to be any function of the
substrings in question. This makes them
flexible enough to model special-case error
patterns that might arise in OCR. How-
ever, from an implementation standpoint,
it is difficult to make use of such general-
ity, so fixed cost assignments are usually
employed. For the results we are about to
present, we use Csub,, = 1 for all p and
g, except that csup,,, = —1 when the two
characters in question match. This simpli-
fication is convenient, but results in a slight
loss in classification accuracy. To illustrate
this, consider the following error pattern:

—_——af—— = ——lda——

where a, 3, and § are characters from
the OCR program’s input/output alphabet,
and the rest of the two strings match per-
fectly. There are at least two possible ex-
planations for this. Ome is that we have

403




‘lhe g-ick brown foxjuraps over tb 1 azy dog.

.00 WS- B HAGKO WOHEW KOM SLOHT XamEa A

+ + o
% deletion \. 1:2 substitution
+ +

+
e€-e insertion N 2:1 substitution
+
+ 1:1 substitut s
-1 substitution i —
R or match N 2:2 substitution
+ +

Figure 1: Example of a trace-back table.

witnessed a 2:2 substitution (af = da).
Another is that a deletion (8 =) and an
insertion (= §) have occurred. Any edit
distance computation with fixed costs must
choose one or the other of these interpreta-
tions independent of the characters in ques-
tion. In the case that ¢ = “m”, f = “n”,
and 6§ = “n”, we have “mn” = “nm”, which
seems almost™certainly a 2:2 substitution.
However,if a = “m”, = “.",and 6 = “ 7,
we have “m.” = “ m”, which seems more
like a deletion and an insertion.

In the final analysis, the most obvi-
ous (and perhaps only) criteria for judg-
ing the accuracy of an OCR classification
procedure is the extent to which it agrees
with what a human expert would say. For
the algorithm just described, we conducted
an informal evaluation and found that the
computer and human agreed approximately
99% of the time.

Finally, we note that our approach to
classifying errors treats any p:g substitution
as a single error event. Clearly there is a
fundamental difference in the quality of the
OCR output between a 1:1 and a 5:5 substi-
tution. Hence, we need to define a measure
of the damage done to a given string by an
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OCR error:
damage(sub,.,) = max(p,q)

If S is the original string and T is the
OCR string, extend damage(S,T) in the ob-
vious way to be the sum of the damages for
all the errors determined when editing 5
into T. We can now compute OCR charac-
ter recognition accuracy as:

(15| - damage(S5, T))
|51

This intuitive definition yields accuracy
rates consistent with the figures published
by other researchers. As an example, an
original line with 100 characters that under-
goes one deletion and one 2:2 substitution
is said to be recognized with 97% accuracy.

accuracy(S,T) =

3 Experimental Method

Previous large-scale OCR experiments have
used documents drawn from mixed sources
and qualities to study the complexity of er-
ror correction for document indexing [8] and
the correlation of errors between different
OCR packages [1]. We focus on charac-
ter recognition errors with a clean source
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document. We used a source document
for which we possessed an on-line repre-
“sentation: Herman Melville’s classic novel,
Moby-Dick. This insures an important de-
gree of uniformity, controllability, and re-
producibility to our studies. We treat OCR,
as a black box and concentrate solely on
the errors it generates as the result of using
various scanning testbeds.

We gathered statistics on errors made
by the OCR package when processing
the Hendricks House edition of Herman
Melville’s novel Moby-Dick. The on-line
version of the text, as prepared by Professor
E. F. Irey, was obtained from the Gutten-
berg Project at The University of Illinois.
This text was used as the data set because
(1) it provides a fairly significant body of
letter samples for statistics, and (2) the text
is an actual work of English literature as
opposed to a random assortment of letters
or words and hence provides a reasonable
context for OCR error analysis.

We summarize here some basic statis-
tics for the original text. The entire text of
the novel contains 1,179,194 characters and
193,550 spaces. The most frequently occur-
ring non-space characters are “e” (113,484),
“” (84,050), and “a” (73,892). All the
lower-case letters occur more than 10,000
times except for the letters “j” (815),
“k” (7,751), “q” (1,202), “v” (8,313), “x”
(1,186), and “z” (614). The frequency-of-
occurrence for capitalized letters is in the
hundreds. Fewer than 100 of each of the
digits “0” through “9” occur in the text.
The most frequently occurring punctuation
mark is the comma (18,809) and the least
frequent is the exclamation point (1,719).

In order to obtain a large quantity of
uniformly formatted testing pages, we per-
formed some minimal preprocessing of the
original text. All text, including chap-
ter numbers and titles, was placed on the
page with a single blank space between each
word. There were no breaks between titles
and paragraphs or between two consecutive
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paragraphs. Tabs and multiple spaces in
the text were all replaced by a single space.
The output was left-justified in a single col-
umn with an average line length of 77.1
characters. Fach page was printed on a
400dpi NeXT laser printer using 10-point
Times and 10-point Courier fonts. There
were 315 pages with exactly 48 lines on
each page (except for the last which had
24 lines). Line and page breaks for the cor-
responding pages of each font are identical.

The scanners we used in our study
were a Ricoh IS-410 flat-bed scanner and
a HSD Scan-X Professional flat-bed scan-
ner both equipped with an automatic docu-
ment feeder (ADF'). The Ricoh scanner gen-
erally produces a better quality image, how-
ever, it is much more expensive than the
HSD scanner. We shall refer the HSD scan-
ner as Scanner-1 and the Ricoh scanner as
Scanner-2 in the following text.

In order to ensure that the image dark-
ness of the two scanners is comparable, we
adjusted the binarization thresholds of the
two scanners to produce equally dark im-
ages. This was done by scanning 20 pages
using each scanner and counting the num-
ber of black pixels generated in the images.
The scanning threshold of Scanner-1 was
then adjusted until the average number of
black pixels per page was roughly the same
(£2%) as that from the Scanner-2 image
set.

After calculating the equivalent thresh-
old values, the printed pages for each font
were fed into both scanners using the au-
tomatic document feeders at a resolution
of 300 dpi, yielding 4 sets of input for the
OCR package. A primary motivation for
our using automatic feeders in the test is
that the use of automatic feeders is becom-
ing more prevalent in practice. Thus it
is important to study the performance of
OCR systems under such environment. As
a reference, two additional datasets were
generated by manually placing the docu-
ment pages of both fonts on the Scanner-
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2 flatbed. We also generated another two
datasets by scanning the document pages
of the two fonts upside-down using the
Scanner-1 autofeeder and rotating the re-
sultant binary images via software. Hence,
there were total 8 sets of testing data.

The scanners generated one-bit TIFF
images which we used as input to OCRSer-
vant v2.03 OCR package. The OCR soft-
ware produces output in Rich-Text For-
mat (RTF) which we converted to standard
ASCII using an RTF-to-ASCII filter.

It is important to point out that during
the entire test, we made no modifications
to the TIFF images (other than inverting
the mirror image TIFF files) or the OCR-
generated text. During the classification
procedure, we did uncover a small number
of line insertions in the OCR results. Most
of the inserted lines were blank. However,
in one case, a non-blank textline was in-
troduced as the result of dirt between two
textlines in the scanned image. All spuri-
ous lines were identified and removed from
the text by the classification process, not
by manual editing. The techniques used
to perform this process are a further ex-
tension of the alignment algorithm and are
discussed in [5].

4 OCR Error Distributions

In this set of experiments, the classification
procedure interprets the OCR errors as up
to 4-character substitutions (0 < p,g < 4).
Figures 2, 3 show the results of the error
classification for each dataset. The value at
it" row and j** column in the tables rep-
resent the total number of i:j substitutions
classified.

Figure 4 shows that the OCR perfor-
mance of the Scanner-1 datasets was 0.2%
lower than that of the Scanner-2 datasets.
For a page of average page of 3700 charac-
ters, a 0.2% error rate accounts for roughly
7.5 more character errors. Questions then
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arise as to how Scanner-1 autofeeding pro-
cess incurs new OCR errors. For example,
are the errors random? Do the composition
and distribution of the set of OCR errors
change?

To answer these questions, we examined
our procedure and the resulting data. We
noted that the inputs to the both scan-
ners were the same physical set of text
pages, and the OCR processes were iden-
tical. Therefore, we believe that the in-
crease in the error rate may be attributed to
the hardware/firmware used in generating
images. Also, we observed that the OCR
process performed poorly on the Scanner-
1 datasets independent of the font. Fur-
thermore, we note from Figure 2 and Fig-
ure 3 that the OCR performance was very
similar for each font when Scanner-2 was
used regardless of the mode of input (ADF
or manual). Therefore, we. believe that the
performance decline is not a characteristic
of auto-feeders in general, but rather may
be due to less expensive sheetfeeders.

We now examine the OCR error distri-
bution as a function of physical location.
Our interest is to find out if there exists
a correlation between the error occurrence
and its location on the page. In order to do
so, we mark each OCR error according to
its coordinates and then examine the distri-
bution.

Our method for doing this is to logically
overlay the printing area of the page with
a grid of cells. Each row in the grid repre-
sents a textline. Each column of the array
represents a vertical strip of width §. We
select § = 40 pixels. We associate a triplet
of indices (r, ¢, p) to each character, where
r denotes the grid row, ¢ is the column of
the grid and p is the page number. The
specific column of the grid is calculated us-
ing the horizontal center of each character’s
bounding box, T, ¢ = [T/§].

Similarly, each error is also assigned
with a triplet (r, ¢, p). where r,c,and p
are defined as same as above if the error
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- Scanner-1 ADF

Scanner-1 ADF Inverted

p:q|]=?0|:>l|:?2[=>3l¢4

pq =0 =>1[=2][=>3|=4

0= 0| 799 6 3 8

0= 0| 976 6 6 10

1= | 2022065 | 469 | 59 3

1= | 251 | 1478 | 396 28 2

2= || 4| 433 335| 64| 33 7= || 0| 511 288 | 74| 27

3= 1| 5| 12| 53| 34 3= || 0| 3| 13| 82] 45

4= 0| 0| o| 5] 18 4= | 0| 0| 2] 10| 30
(a) (b)

Scanner-2 ADF

Scanner-2 Manual

p:qll=>0|:>1!=>2!=>3[=>4

pq=0[=1[=2[=>3]=14

0= 0| 772 | 50 0] 49

0= 0| 736 1 0 53

1= | 258 | 634| 59| 3| O 1= | 269 733 59| 4] 1

2= | 0] 52| 146] 10| 1 2= 0| 549 162] 8] 2

3= 0| 3| 4] 6] 0 3= 0| 5| 5| 4] 2

i o] 0] 0] 0] o0 4= 0| 2| of 2] 1
(c) (d)

Figure 2: Error composition for Times font.

Scanner-1 ADF

Scanner-1 ADF Inverted

pq[=0[=1][=2[=>3|=>4

pq=>0]|=>1[=2][=>3]|=>14

0= 0| 548 8 3 0 0= 0] 312 6 2 1
1= 912090 | 513 25 0 1= 511839 | 325 11 2
2 = 4 3| 151 67 20 2= 4 4| 143 53 15
3 = 0 1 0 55 25 3= 0 0 2 82| 20
4 = 0 0 0 0 9 4= 0 0 0 17

(a)

0
(b)

Scanner-2 ADF

Scanner-2 Manual

pq|[=>0][=>1[=>2[=>3]=4

pq|=0][=>1[=>2][=>3]|=14

0= 0| 185 4 2 0 0= 0| 92 ) 2 0
1= 4| 610 23 3 0 1= 11} 706 39 15 1
2= 0 11 122 28 10 2= 0 71| 156 19 5
3= 0 0 0 31 3 3 = 0 0 3 23 1
4= 0 0 0 0 3 4 = 0 0 0 0 3

(c)

(d)

Figure 3: Error composition for Courier font.
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- Scanner-1 Scanner-2
ADF | ADF Inv. | ADF l Manual
Courier || 99.6% 09.7% | 99.9% | 99.9%
Times 99.4% 99.5% | 99.7% | 99.7%

Figure 4: OCR accuracy for all eight datasets.

involves only a single character. For burst

errors involving multiple characters, ¢ is cal--

culated at the middle of the burst.

We calculate an average error rate per
indices pair (r, ¢) over the 314 full pages of
text in each of the datasets to produce an
error distribution map:

314 314

e(r,c) = Z N(r,e,p)/ Z Ne(r,¢,p)

=1 p=1

where N (7, ¢, p)is the number of characters
at indices (r,¢) in page p, and N(r,c,p)
is the number of errors at indices (7,c¢) in
page p. Figure 8 shows representative er-
ror distribution maps computed for 4 of the
datasets.

The shadiig of the distribution maps
show the error rates for each cell in the
grid. The darker shades indicate a higher
error rate. For this paper, we distinguished
the errors per character using 3 intervals:
[0-0.5%), [0.5 - 2.0%), and [2.0 — o]

Comparing the distribution maps of the
Scanner-1 datasets (Figures 8a, 8b) with
the Scanner-2 datasets (Figures 8c, 8d), one
can see that the error distributions are sig-
nificantly different. There exists a periodic
burst of errors in the Scanner-1 ADF ver-
sions, while no such error distribution skew
is seen in either version from Scanner-2. A
further investigation leads us to believe that
the periodicity phenomenon is linked to the
mechanical movement of the auto-feeder.
It is noted that during the scanning, the
Scanner-1’s autofeeder pauses periodically
(probably to unload its buffer). The bitmap
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images sometimes show a distortion charac-
terized by the “stretching” or “shrinking”
of a few scanlines at these stopping posi-
tions. These stopping positions are coinci-
dent with the “burps” of the error distribu-
tion maps.

An estimate of the period of this
“pause” effect can be calculated using the
following approach. Determine, in pixels,
the heights of the textlines and inter-line
spacing regions. Using these values, con-
struct a profile for the page showing the
placement of these lines along the Y-axis
of the page. Next, build a pattern based
on the lines that clearly exhibit unusual
amounts of damage in the sample of inter-
est. For a range of possible periods and
starting displacements, compute the lines
that would be damaged in the profile and
match this against the pattern. By choos-
ing the combination of parameters that re-
sults in the best match, we can arrive at a
range of possible values for the period. Fig-
ure 5 reflects the calculated period.

Examining the correlation between the
textlines which correspond to calculated pe-
riod and the damage histogram (Figures 9-
16), we find that all the highly damaged
lines fall on the calculated “pause” loca-
tions. We also note that the difference in
period values correspond to the difference
in scan frame width (approximately 2%).

The error distribution map
for the Scanner-1/ADF Courier (Figure 8a)
dataset also shows what we believe to be a
CCD defect at a vertical column position.

Issues in Automatic OCR Error Classification




- Scanner-1 Scanner-1 Inv.
Times l Courier | Times ] Courier

[ Est. Period (pixels) || 236 — 237 [ 230 — 234 | 237 [ 231 |

Figure 5: Estimated period of pause errors.

This defect splits many characters into two
parts, yielding a visible high degree of OCR
damage at the column around the dropped
scanline.

From the maps, we also see a high num-
ber of OCR errors in the leftmost column
in the grid. These errors are due to space
insertions in the left margin (due to skew
and noise).

Figures 9-16 present histograms show-
ing the damage on a per textline basis over
all 315 pages.

From these histograms we can see that
the scanner “pauses” exert different de-
grees of damage to the datasets. Some-
times the pauses fall between the textlines
so the effect is not visible. Also, differ-
ent textlines exhibit different proportions
of damage. For example, we see that the
Scanner-1/ADF-Invert datasets have an ex-
tremely high number of errors at textline
38. We believe the effect of a pause has
different impact on the OCR performance
depending on the font and also on the posi-
tion of the damage relative to the text base-
line. Clearly, OCR accuracy will be differ-
ent when there is damage in the middle of
a textline as opposed to at the top of the
textline.

The significance of damage induced by
this scanning defect can be estimated in the
following measurements: Let damage(k) be
the damage for text line k, Totalp be the
total damage across all textlines, D be the
mean damage for all text lines and Ap be
the standard deviation. Furthermore, let
the set of “good” lines, G, include only
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those lines whose damage is less than one
standard deviation from the mean:

G = [damage(i)|damage(i) < D + Ap]

We compute the mean damage over that set
as G. We can then calculate ratio R which
reflects the significance of the scanning fail-
ure on the size of the error set:

R = 1 — 48 x G/Totalp

Figures 6 and 7 lists the results for the 8
test results. The data in these Figures indi-
cate that the Scanmer-1 “pause” defect in-
troduces about 30%-40% more OCR errors.
The table also shows that in general, even
if we take the “pause” factor off, Scanner-
1 still produces a higher number of errors
than Scanner-2.

The impact of Scanner-1 defect is also
evident in the characteristics of the error
composition. From Figures 2 and 3, we can
see that Scanner-1 causes a sharp increase
of the multi-substitution errors in addition
to a substantial increase of simple substi-
tutions. The number (and proportion) of
multi-substitutions is much smaller in the
Scanner-2 tests. Moreover, it is noted that
the 1:2 substitution errors in the Scanner-1
datasets were more than ten times higher
the Scanner-2 datasets. Interestingly, the
error composition of the Scanner-2 aut-
ofeeder datasets and the manual datasets
remain similar in all the tests. As a mat-
ter of fact, the OCR software performed
slightly better on inputs taken from the
Scanner-2/ADF than on inputs from man-
ual placement.
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- ' Scanner-1

ADF | ADF Inv. | ADF | Manual

Scanner-2

Totalp | 6,555 6,250 | 3,508 | 3,610
Totalg | 4,334 4512 | 3,508 | 3,610
(R | 034] 028] 00] 00]

Figure 6: Significance of pause errors in Times datasets.

Scanner-1 Scanner-2
ADF ‘ ADF Inv. | ADF l Manual
Totalp | 4,674 3790 | 1,355 | 1,449
Totalg | 2,609 2142 | 1,355 | 1,449
| R [ 0.44 | 0.43 ] 0.0 | 0.0 |

Figure 7: Significance of pause errors in Courier datasets.

5 Discussions and Conclu-
sions

It has long been noted that in a “real-
world” environment, page quality and font
idiosyncrasies can substantially affect the
number and nature of OCR errors. The
data we presented in this paper reveals an-
other important error source: the scanning
system. As one of the factors to be consid-
ered when performing experimental studies,
the choice of a scanner and its attendant
ADF can have a major impact on the re-
sults. While some systems appear to have
little or no effect on error behavior (when
compared to manual page placement), oth-
ers can bias the performance of an OCR
package by a significant amount. This is in
spite of the fact that the page images may
appear comparable in both cases, with no
extraordinary damage visible to the human
eye.

In addition, we showed that this ef-
fect is non-random with respect to dis-

tribution across the various OCR error
classes. This result is particularly impor-
tant to recognition algorithms based on sta-
tistical classifiers trained using real data.
The underlying assumption in such sys-
tems is that if the training set is sufficiently
large, uniform coverage of the pattern space
can be achieved. Our tests suggest that
previously overlooked components can dis-
tort the OCR results, thereby skewing the
model to the peculiarities of the training
environment.

Moreover, the changes in the size and
composition of error sets brought on by us-
ing different scanning hardware could color
the performance evaluation of OCR systems
as well as make it more difficult to repro-
duce reported results in some cases.

Results such as these can only be ob-
tained by analyzing large quantities of test
data in a rigorous, controlled fashion. The
OCR error classification scheme we de-
scribed in this paper seems to serve this
purpose well.  This, coupled with new,
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specialized visualization tools like our two-
dimensional error distribution maps, pro-
vides a powerful approach to evaluating the
error behavior of OCR systems.
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Figure 8: Representative error distribution maps.
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