Using Consensus Sequence Voting to Correct OCR Errors

Daniel Lopresti Jiangying Zhou
Matsushita Information Technology Laboratory
Panasonic Technologies, Inc.

Two Research Way
Princeton, NJ 08540, USA

[dpl,jz]@mitl.research.panasonic.com
ABSTRACT

In this paper we present an approach to the OCR voting problem based on a result
from molecular biology. Our technique uses a practical heuristic modification of an
exponential-time algorithm that is guaranteed to be optimal for all cases of interest.
Experimental results demonstrate that between 20% and 40% of the errors caused by a
single OCR package can be corrected by simply scanning a page three times and running
our voting procedure. This level of performance is achieved without making a prior:
assumptions about the distribution of OCR errors (i.e., no “training” is required).

1 Introduction

Optical character recognition (OCR) is a process that maps a page image I representing a
source text string S into a recognized string R. Typically, both S and R are defined over the
same fixed alphabet X (for English, ¥ is usually ASCII). An example is shown in Figure 1.
In this case, R contains two errors introduced by the OCR software: a ¢ was misread as an
[(in the second “the”), and a mapping for the a in “lazy” could not be determined with
reasonable certainty, hence a “don’t know” character (~) was output.

Source text S = I The quick brown fox jumps over the lazy dog.

Bitmapped image | I The quick brown fox jumps over the lazy dog.

Recognized text R

I The quick brown fox jumps over |he |~zy dog.

Figure 1: An OCR example (Caere OmniPage Professional, ver. 2.1).

While the most abstract view of OCR is as a “black box” recognizer accepting bitmaps
and generating text, in truth the process consists of multiple levels of segmentation followed
by a final recognition (i.e., pattern matching) step. A conceptual overview of the “generic”
OCR process is shown in Figure 2(a). Page images are segmented into lines, lines into char-
acters, and then finally characters are matched against pre-defined prototypes to determine
their translations.

Page Bitmap Page Bitmap
Line Line
Segmentation Segmentation

|
Line Bitmaps

|
Character Bitmaps

v 2
Character Character
Segmentation Segmentation

—

|
Line Bitmaps

|
Character Bitmaps

1

v v
Character Character Character Character
Classifier Classifier 1 Classifier 2 Classifier N
v | | |
Text Text 1 Text 2 Text N
+
(a) “generic” OCR Q Voting < J
Algorithm
v
Text

(b) traditional voting

Figure 2: Overview of “generic” OCR and traditional voting procedures.

Current OCR is far from perfect, as Figure 1 indicated. Mistakes can be made at any
level in Figure 2(a), and error rates typically range from 0.2% (for clean, first-generation
copy) to 20% or worse (for multi-generation photocopies and faxes). The following example
illustrates some common OCR errors:

Source
Recognized ’1lhe q~ick brown foxjurnps ovcr tb 1 azy dog.

The quick brown fox jumps over the lazy dog.

Intuitively, we can classify the errors as: simple substitutions (e — ¢), multi-substitutions
(T —'l, m — rn, he — b), space deletions and insertions, and unrecognized characters
(u—"). Without knowing the internals of the OCR package, it is not possible to state with
certainty what has caused a given error. It is, however, fairly safe to say that some errors
arise in the classification step (e.g., e —c¢), while others are due to one of the segmentation
phases (e.g., m—rn).

It is well known that OCR classifiers (and non-linear classifiers in general) are sensitive
to slight perturbations in their input. As a result, OCR error behavior can vary; the same
page re-scanned and re-OCR’ed, or OCR’ed using a different package, may well exhibit an
overlapping but essentially different set of errors. Motivated by this phenomenon, a number
of researchers have suggested combining the outputs of multiple classifiers through voting
procedures, with the goal of producing results better than those that could be obtained
using any single classifier.

The basic voting process is illustrated in Figure 2(b). While there are important differ-
ences between the schemes described in the literature, this same overall approach is used in

Using Consensus Sequence Voting to Correct OCR FErrors

most if not all cases. Instead of a single classifier as the last phase in OCR, the outputs of
N classifiers are combined using any of a number of voting algorithms.

A specific example of this is shown in Figure 3. Here we also illustrate how such a scheme
might fail. The voting procedure (simple majority voting in this case) corrects the { — 1
error in the output of Classifier 2 (i.e., “Call”). But because of a segmentation mistake, all
three classifiers are mislead into reading m as rn.

me Ishmael.

|
Character
segmentation
Segmentation
: error
o0 0

seeo r N Classifier 1

L r 4] Classifier 3

a [
g T eee r N Classifier 2
a [

C
C
C

Vote

Clal 11 et n]

Figure 3: Cases where traditional voting succeeds and fails.

’7 Voting phase 4‘ F Segmentation phase H

In the next section we discuss related work. We then present our new approach to the
OCR voting problem. Section 4 gives experimental results that demonstrate the promise
of this method. Finally, we draw some conclusions and present areas for future research in
Section 5.

2 Related Research

Existing methods for combining OCR results for error detection and correction mainly deal

with isolated characters. A very common approach is to take a set of classifier outputs

directly and determine the input class with the highest aggregate score!. An alternative

strategy is to explicitly determine the classifier most likely to produce the correct decision?.

Daniel Loprest: and Jiangying Zhou

Another approach is to measure how well individual classifiers recognize members of a
class and uses this measure to build discriminant functions®. Other methods have explored
various weighted-voting schemes including the ranking-order method, the confidence accu-
mulation method, the Dempster-Shafer evidence method*™®, etc. These approaches often
require a comparable and consistent representation of the decisions produced by individual
classifiers.

An alternative to the isolated-character-based approaches is to combine the outputs of
OCR processes using a word-level scheme. In a paper by Ho, Hull, and Srihari, a decision
combination strategy computes confidence scores for a lexicon produced by a collection
of word recognition algorithms and derives a consensus ranking’. Another word-based
approach uses a similar Borda count method®. In both cases the decision is made on words,
not on characters within words. Hence, a legitimate but incorrect word may pass as the
final decision. Moreover, in practice word boundaries are sometimes difficult to identify
reliably. For example, punctuation marks are often taken as word delimiters in addition to
spaces®. Punctuation marks, however, are very error-prone due to their small size.

Recently, the idea of combining N strings generated by multiple OCR systems has also
received attention. For example, a method for finding a common substring is proposed for
use in an OCR voting scheme!®. The approach described is not guaranteed to find the
longest common substring, however, which makes a rigorous analysis difficult. In a paper
by Concepcion and D’Amoto, a dynamic programming algorithm is used to synchronize
two OCR outputs!!. This approach is close in spirit to ours, which can be viewed as a
generalization of a related algorithm and its heuristic to larger numbers of OCR voters.

3 Consensus Sequence Voting

It has been noted that a large percentage of all OCR errors are due to failures in character
segmentation'?. Unfortunately, this step is not covered by the voting procedure in Fig-
ure 2(b). Ideally, we would like to be able to combine the results of multiple segmentation
attempts as well as multiple character classifications. This does, however, introduce an
additional complication, as shown below:

OCR 1 Call me Ishmael.
OCR 2 Call me Ishrnael.
OCR 3 Call mc Ishmael.

Each OCR line contains one error. Simple character-by-character voting is able to
correct two of the errors (I — 1 and e —¢). The other error, however, involves a segmentation
mistake (m — rn), making a character-by-character vote impossible without first taking
explicit action to determine a correspondence between the various characters. Somehow we
must recognize that m, rn, and m should all vote together in the same “election.”

This problem bears a strong resemblance to one from the field of molecular biology,
where it is not uncommon to be confronted by three or more related DNA sequences with
a need to determine their most plausible shared ancestor. By analogy, we can view OCR
candidate lines as having “evolved” from a single source line as the result of errors in
the OCR process. Adopting this model from molecular biology, along with a dynamic
programming algorithm for its solution and a heuristic to speed the computation (both to
be described shortly), allows us to structure the OCR voting problem as shown in Figure 4.

Using Consensus Sequence Voting to Correct OCR FErrors

Page Bitmap

v
Line
Segmentation
|
Line Bitmaps
¢« Ty
OCR OCR OCR
Package 1 Package 2 Package N
| | |
Raw Text 1 Raw Text 2 Raw Text N
v v v
Consensus Sequence
Algorithm
| | |
Aligned Text 1 Aligned Text2 ++= Aligned Text N
v
Voting
Algorithm
\7
Text

Figure 4: Consensus sequence voting.

The problem of determining a consensus sequence given multiple candidate sequences
is related to the well-known, mathematically rigorous computation for determining the edst
distance between two sequences S and R. In the traditional case'®, the following three
operations are permitted:

1. delete a character,
2. insert a character,

3. substitute one character for another.

Each of these is assigned a cost, Cdel, Cins, and csyup, and the edit distance, d(S, R), is defined
as the minimum cost of any sequence of basic operations that transforms § into R. This
optimization problem can be solved using a well-known dynamic programming algorithm.
Let § = 5183...5m, R = ri73...7y, and define d;; to be the distance between the first
¢ characters of S and the first j characters of R. Note that d(S,R) = dy,n. The main
dynamic programming recurrence is then:

di—1,j-1 + csun(Si,75)
d;; =min ¢ di_1,; + cqer($;) for 1<i1<m,1<j<n (1)
dij—1+ Cins(7j)

When Eq. (1) is used as the inner-loop step in an implementation, the time required is
O(mn) where m and n are the lengths of the two strings. By letting S be the source
(original) text and R be the recognized (OCR) text, and recording the optimal decision(s)
made at each step, this procedure can be used for the classification of OCR errors'® 1.
More complicated variations can handle more sophisticated errors, including multi-character
substitutions (i.e., segmentation errors).

Daniel Loprest: and Jiangying Zhou

The consensus sequence problem for candidate lines Ry, Rs,..., Ry is defined in terms
of edit distance: determine a sequence C such that the combined cost of editing C into each
of the R; is minimized. That is, if D(Rq, Ra, ..., Ry) represents the cost of the consensus
sequence alignment, then:

N
D(Rla R27 EERE RN) = CI'%%l* ; d(C7 R'L)
and the set of all possible consensus sequences is:

N
Cons(R1,Rs,...,Ry) ={C € £*|) d(C,R;) = D(R1,Ra,...,Rn)} (2)

=1

While in general there may be more than one consensus sequence, we are usually only
interested in finding a representative C € Cons(R1, Ra, ..., Rn).

Before discussing the consensus sequence computation, it is helpful to define several new
quantities. Let ¢ be the empty string, X' = X U {¢}, csun(c,) = cder(c), and coup(@,c) =
Cins(c). Now define:

6(7'17 T25--) TN) = :Eélz:% [csub(ca Tl) + csub(ca T2) +...+ csub(ca TN)] (3)

We can view § as the voting function, as it determines the “best” value ¢ at a given stage
in the computation. Although finding this ¢ might appear to require an exhaustive search
over X/, in practice the cost function c,y is usually simple enough that the choice of the
optimal ¢ is obvious.

An algorithm for computing D (and hence for determining a consensus sequence) is
given in a paper by Kruskal'®. It involves constructing C as we build a multi-dimensional
distance table. For three candidate sequences Ry = r1,71,...71,, Ry = 79,72, ...72,,, and
R3 = 713,73, ...73,, the recurrence is:

Di—1,j-1,6—1 + (15, 72,5 r3,)

Di_1,-1% + 6(r1;, 725 ®)

Di-1,jk-1 + 6(r1;, b, 73,)

Dijk=min< D;_qk+ 6(r1;, ¢, 90) for 1<i<,1<j<m,1<k<n (4)
Di,j_l,k—l + 5(¢7 T2;, T3k)

Di,j—l,k + 5(¢7 T2;, ¢)

D; i1+ 6(,¢,73,)

This computation requires time O(Imn).
Consider for a moment the first term in Eq. (4) (the one involving D;_q j_14-1). A
natural cost assignment to use is:

0 ife=r7r
Csup(C,7) = 1 ifc#r

Under these circumstances, it should be quite clear that the character ¢ € X’ that yields

the minimum combined cost is precisely the majority “vote” among the three characters
T1;, T2;, and 73,. If there is no majority (i.e., all three characters are different), then any

Using Consensus Sequence Voting to Correct OCR FErrors

one can be chosen arbitrarily. The other cases in Eq. (4) handle possible scenarios involving
one or more of the sequences “missing” the character in question and hence voting for a
deletion.

To generalize the consensus sequence computation to higher dimensions (i.e., more vot-

ers), let A € {0,1} and define:

¢ ifA=0
TeA =1 7 fA=1

We view 7;.a as the substring starting at position ¢ of length A. Then we have:
Dy iy,eein = IIE;H [Diy—Asyiz—Agyin—An T 5(T1i1:A1 2728000 %0 TNiN:AN)] (5)

for 1<4; <|Ry|, 7=1,2,...,N

The number of basic steps to evaluate one iteration of Eq. (5) is 2 — 1, hence the total for
the computation is:

N
¥ -)[R

If the sequences all have length n, the time is O(nN). That is, the time is exponential in
the number of sequences (i.e., voters).

This fact has lead a number of researchers to regard this approach as impractical despite
its mathematical elegance. Fortunately, though, there is a simple heuristic that works in
all cases of interest (i.e., we can prove strict bounds on its performance), and that makes
the computation quite feasible from the standpoint of its run-time.

The heuristic is based on the observation that if the sequences in a collection are all
quite similar (as should be the case with voting OCR lines), then the optimal dynamic
programming path must remain close to the main diagonal for Egs. (1), (4), and (5). As a
result, we need only compute those distance values in a region near the diagonal, bounded
by a small constant, k&, which is determined in advance.

Let ﬁ(Rl, Rs, ..., Ry) be the value computed by the heuristic. As before, the recurrence
is:

Dy iy,eein = IIEH [Diy—Asyiz—Agyin—An T 5(T1i1:A1 2728000 %0 TNiN:AN)] (6)
2

However, instead of allowing the indices to range freely as in Eq. (5), we only compute a
particular D;, ;, . ;. When:

—k<ig—1g<k for 1<a,f<N
When the sequences in question are all similar, a performance guarantee can be made

for the heuristic. The following straightforward result has been stated independently by
researchers working in several different disciplines; we repeat it here without proof:

Theorem 1 If D(R1, Ra,...,Ry) < k, then

D(R1,Rs,...,RN) = D(R1, Ra, . .., Ry).

Daniel Loprest: and Jiangying Zhou

Of course, not only does the heuristic compute the same cost function as the optimal
algorithm under these circumstances, it also determines the same consensus sequence.

The precise number of steps used by the heuristic is somewhat more difficult to analyze
than the original algorithm, but the asymptotic time complexity is fairly easy to determine.
Again we assume that all N sequences have the same length n. If we allow one index, say 41,
to range freely 1 < #; < n, then each of the remaining N —1 indices is constrained to take on
between k£ + 1 and 2k + 1 values. Hence, the asymptotic time complexity is O(nk"). While
this is still exponential, k is limited by the maximum number of OCR errors we expect on
a line, and is typically much smaller than n, the total length of a line. Table 1 compares
the times required for the optimal algorithm and the heuristic assuming that » = 80 and

k = 8. The improvement offered by the heuristic is dramatic.

Table 1: Approximate number of computation steps (optimal vs. heuristic).

| N (voters) || Optimal | Heuristic | Speed-up factor |
1 80 80 1
2 6,400 640 10
3 512,000 5,120 100
4 40, 960, 000 40, 960 1,000
5 3,276, 800,000 327,680 10,000
6 262,144,000, 000 2,621, 440 100,000
7 2.10 x 10%3 20,971,520 1,000,000
8 1.68 x 101° 167,772,160 10,000, 000
9 1.34 x 107 | 1,342,177,280 100, 000, 000
10 1.07 x 10™° | 10, 737,418,240 || 1,000, 000,000

In an era of 100-200 MIPS workstations, optimal voting is not feasible for more than four
voters, whereas the heuristic remains practical for up to eight voters. For the case of four
voters, the heuristic is three orders of magnitude faster than the original algorithm. Further
improvements in the heuristic seem quite possible and are a subject for future research.

An example of the performance of our approach on a line of real OCR test data is shown
in Figure 5. The computation took 0.1 seconds on a DECstation 5000/200 workstation.

OCR 1 the circulation. Whenever I “nd myself growing grim about the mouth;
OCR 2 the circulao’on. Whenever I find myself growing grim about the mou~;
OCR 3 the circulation. Whenever I find myself growinp “rim about the mouth;
Vote the circulation. Whenever I find myself growing grim about the mouth;

Figure 5: Voting example using real OCR data.

4 Experimental Results

In this section we describe an experiment which illustrates how “random” perturbations in
the OCR input image can be used to alter the distribution of OCR errors and how this

Using Consensus Sequence Voting to Correct OCR FErrors

result can be subsequently exploited by our voting process to improve OCR performance.

Many researchers have explored the use of multiple OCR classifiers to generate inde-
pendent “guesses” for a given input. We take an alternate approach that uses only a single
OCR process to generate multiple candidates. Our idea is to create small variations in the
input image prior to OCR. The rationale behind this is that OCR processes are sensitive to
slight perturbations in their input. For example, error distributionserror distribution can
vary from scan to scan (i.e., the same page re-scanned may well exhibit a different error
profile). Motivated by this phenomenon, we investigated using the natural variation caused
by the scanning process to generate multiple OCR input images for consensus sequence
voting. We found that by using the results from three scanned versions of the same page
as input, our voting procedure could correct between 20% and 40% of the OCR errors.

This point is illustrated by the two images in Figure 6. These nearly identical bitmaps
were obtained by binarizing the same gray-level image using slightly different thresholds
(190/195). Despite their close similarity, one OCR package yielded “concemment” for the
left image and “concernment” for the right. The inherent non-linear nature of OCR. classi-
fiers induces a certain degree of “randomness” in the distribution of OCR errors which can
be exploited by voting procedures like the one just described.

concermnmment concermniment

Figure 6: Perturbed inputs yield different results (“concemment” vs. “concernment”).

An appealing characteristic of using only one OCR package for our tests is that it pro-
vides a controlled environment for analyzing the voting process; all the inputs are consistent
and comparable. It has long been noted that combined classifiers perform better than a
single classifier. Yet how exactly this improvement comes about is not always clear. Viewed
from this perspective, our experimental approach lays a uniform foundation for the analysis
of various voting strategies. More importantly, we do not make any a prior: assumptions
about the voters. Multiple-classifier voting schemes that rely on weights require training
data that necessarily limits their generality. A well-known weakness of such systems is that
their solutions are often training-set-specific. The results we are about to present avoid this
pitfall.

To test the effectiveness of our voting scheme, we generated results on seven datasets
representing a range of document qualities. The source document in all cases was derived
from the first 20 pages of Herman Melville’s novel Moby-Dick. The text of the novel was
pre-processed to ensure uniform page formatting. In particular, all text was placed on the
page with a single space between words. There were no explicit paragraph breaks (i.e., all
lines were made nearly the same length, approximately 77 characters). The output was
left-justified in a single column, with exactly 48 lines on each page. The pages were set in
10-point Times and printed on a 400dpi NeXT laserprinter.

So that we could examine datasets of different qualities, we photocopied the source
document six times successively using a Panasonic FP 6070 copier. This yielded seven sets
of test pages go, 91, g2, - - -, g6, Where go corresponds to the original source document and g;
to the it generation photocopy. These seven test sets were then fed through a Ricoh IS-410
flat-bed scanner using the automatic document feeder and scanned at a resolution of 300

Daniel Loprest: and Jiangying Zhou

Table 2: Consensus sequence voting — accuracy improvement.

Test OCR1 OCR2 OCR3 | Average Vote
dataset || accuracy | accuracy | accuracy | accuracy || accuracy
9o 99.7 99.7 99.7 99.7 99.8
a1 99.4 99.3 99.4 99.4 99.6
92 98.7 98.7 98.7 98.7 99.2
g3 97.5 97.2 97.5 97.4 98.2
g4 95.4 95.4 95.4 95.4 96.3
gs 93.8 93.7 94.1 93.9 95.1
Js 91.9 91.9 91.9 91.9 93.3

dpi. Each dataset g; was scanned three times successively under the same settings.

The scanner generated one-bit TIFF images which we used as input to OCRServant v2.03
running on a NeXT workstation. For each test dataset, the voting process took the OCR
results for the three scanned versions and produced a consensus sequence output. We refer
to the “raw” OCR results as OCR1, OCR2, and OCRS3, and to the voting result as Vote. To
analyze the various outputs, we applied our automatic OCR error classification procedure!s.
Table 2 gives recognition accuracies for the three scanned versions of each dataset, as well
as the accuracies for the corresponding voting result. In all cases, 3-way consensus sequence
voting performed better than any of the original OCR runs. Note that the voting process
shows a consistent improvement in spite of the fact that the original three datasets for a
given generation are all quite close in terms of accuracy. The strength of the consensus
sequence voting process comes from exploiting the differences in their error distributions.

A closer examination of the effects of voting on OCR error behavior in each case is
presented in Table 3. Here we give error counts for the three original OCR runs as well as
for the consensus sequence vote. These figures illustrate the impact of voting relative to the
size of the error set. From Table 3, it is evident that by simply scanning each page three
times, voting was able to correct up to 38% of the errors caused by OCR. Interestingly,
voting corrects an increasing percentage of errors as the document quality degrades slightly,
but then its net effect starts to dissipate as the copy quality deteriorates further. This
suggests that certain errors are inherent in the document (i.e., the physical medium) and
hence not amendable to voting, a fairly intuitive result. Still, it is quite clear that a
significant “baseline” error rate can be eliminated through consensus sequence voting.

5 Conclusions

In this paper we have presented a new approach to the problem of voting to correct OCR
errors. Based on a result from molecular biology, the consensus sequence heuristic we
described is fast enough to be practical, yet it is still guaranteed to be optimal for all cases
of interest. Our experimental data shows that this technique can correct between 20% and
40% of OCR errors over a range of document qualities.

The notion that repeatedly sampling an input can lead to higher recognition accuracies
is also a fundamental result. In another paper, we show that by relaxing a basic assumption
in statistical pattern recognition, that the input be sampled only once, it becomes possible

Using Consensus Sequence Voting to Correct OCR FErrors

Table 3: Consensus sequence voting — OCR error counts.

Test OCR1 | OCR2 | OCR3 | Average || Vote | Improvement
dataset || errors | errors | errors €rTorS €rTorS rate
go 228 231 249 236 157 0.335
g1 472 480 505 485 312 0.358
ga 945 957 970 957 598 0.375
gs 1,870 1,886 2,048 1,934 1,359 0.298
ga 3,403 | 3,430 3,431 3,421 2,742 0.199
gs 4,350 | 4,608 | 4,637 4,531 3,651 0.194
ds 6,025 | 6,031 6,046 6,034 4,963 0.177

to build classifiers that beat the Bayes error bound?”.

In the future, we plan to examine ways of further speeding the voting process. We also

intend to evaluate the consensus sequence model from the standpoint of weighted-voting.
Finally, we hope to extend this approach to more general image recognition problems.

References

[1]

2]

(3]

[4]

(5]

[6]

C. Nadal, R. Legault, and Ching Y. Suen. Complementary algorithms for the recog-
nition of totally unconstrained handwritten numerals. In Proceedings of International
Conference on Pattern Recognition, volume 1, pages 443—-449, New Jersey, 1990.

Michael Sabourin, Amar Mitiche, Danny Thomas, and George Nagy. Classifier com-
bination for hand-printed digit recognition. In Proceedings of the Second International
Conference on Document Analysis and Recognition, pages 163-166, Japan, October
1993.

Tin Kam Ho. Recognition of handwritten digits by combining independent learning
vector quantizations. In Proceedings of the Second International Conference on Docu-
ment Analysis and Recognition, pages 818-821, Japan, October 1993.

Tin Kam Ho, Jonathan J. Hull, and Sargur N. Srihari. On multiple classifier systems
for pattern recognition. In Proceedings of the 11th International Conference on Pattern
Recognition, pages 84-87, Netherlands, September 1992.

E. Mandler and J. Schurmann. Combining the classification results of independent
classifiers based on Dempster-Shafer theory of evidence. In E. S. Felsema and L. N.
Kanai, editors, Pattern Recognition and Artificial Intelligence. Elseiver Science, North
Holland, 1988.

Y. S. Huang and Ching Y. Suen. Combination of multiple classifiers with measurement
values. In Proceedings of the Second International Conference on Document Analysis
and Recognition, pages 598—601, Japan, October 1993.

Daniel Loprest: and Jiangying Zhou

[7]

(8]

[9]

[10]

[11]

[12]

[13]

[14]

[16]

[17]

Tin Kam Ho, Jonathan J. Hull, and Sargur N. Srihari. Word recognition with multi-
level contextual knowledge. In Proceedings of the First International Conference on
Document Analysis and Recognition, pages 905—-915, October 1991.

Brigitte Plessis, Anne Sicsu, and Laurent Heutte et al. A multi-classifier combination
strategy for the recognition of handwritten cursive words. In Proceedings of the Sec-
ond International Conference on Document Analysis and Recognition, pages 642—645,
Japan, October 1993.

R. M. K. Sinha and Birendra Prasada. Visual text recognition through contextual
processing. Pattern Recognition, 21(5), 1988.

Stephen V. Rice, Junichi Kanai, and Thomas A. Nartker. A difference algorithm for
OCR-generated text. In Proceedings of the IAPR Workshop on Structural and Syntactic
Pattern Recognition, Bern, Switzerland, August 1992.

Vicente P. Concepcion and Donald P. D’Amoto. Synchronous tracking of outputs from
multiple OCR systems. SPIE Character Recognition Technologies, 1906, 1993.

C. H. Chen and J. L. DeCurtins. Word recognition in a segmentation-free approach to
OCR. In Proceedings of the Second International Conference on Document Analysis
and Recognition, pages 573-576, October 1993.

Robert A. Wagner and Michael J. Fischer. The string-to-string correction problem.
Journal of the Association for Computing Machinery, 21(1):168-173, 1974.

Jeffrey Esakov, Daniel P. Lopresti, and Jonathan S. Sandberg. Classification and dis-
tribution of optical character recognition errors. In Luc M. Vincent and Theo Pavlidis,
editors, Proceedings of the IS&T/SPIFE International Symposium on Electronic Imag-
ing, volume 2181, pages 204-216, February 1994.

Jeffrey Esakov, Daniel P. Lopresti, Jonathan S. Sandberg, and Jiangying Zhou. Issues
in automatic OCR error classification. In Proceedings of the Third Annual Symposium
on Document Analysis and Information Retrieval, pages 401-412, April 1994.

Joseph B. Kruskal. An overview of sequence comparison: Time warps, string edits,
and macromolecules. SIAM Review, 25(2):201-237, April 1983.

Jiangying Zhou and Daniel Lopresti. Transcending the Bayes Limit through repeated
sampling. In Proceedings of the IAPR Workshop on Machine Vision Applications (to
appear), Kawasaki, Japan, December 1994.

Using Consensus Sequence Voting to Correct OCR FErrors

Index

consensus sequence 5, 6, 7, 8, 10
alignment 6
computation 6, 7
heuristic 7, 8, 10
deletion 2, 7
dynamic programming 4, 5, 7
edit distance 5, 6
insertion 2
molecular biology 1, 4, 10
multiple OCR classifiers 9
multiple OCR systems 4
Moby-Dick 9
OCR error 1, 2, 4,5, 8,9, 10
classification 10
detection and correction 3
distribution 10
random perturbation 8
substitution 2, 5
voting 1, 2, 3, 4,6, 7, 8,9, 10, 11
character-by-character voting 4
consensus sequence voting 9, 10
majority voting 3
multi-classifier voting 9
optimal voting 8
weighted voting 4, 11

13

