Block Edit Models for
Approximate String Matching”

Daniel P. Lopresti Andrew Tomkins
Matsushita Information Technology Laboratory Department of Computer Science
Panasonic Technologies, Inc. Carnegie-Mellon University
Princeton, NJ 08540 Pittsburgh, PA 15213
Abstract

In this paper we examine the concept of string block edit distance, where
two strings A and B are compared by extracting collections of substrings and
placing them into correspondence. This model accounts for certain phenomena
encountered in important real-world applications, including pen computing and
molecular biology. The basic problem admits a family of variations depending on
whether the strings must be matched in their entireties, and whether overlap is
permitted. We show that several variants are NP-complete, and give polynomial-
time algorithms for solving the remainder.

1 Introduction

The edit distance model for string comparison [16, 15] has found widespread application
in fields ranging from molecular biology to bird song classification [12]. A great deal of
research has been devoted to this area, and numerous algorithms have been proposed
for computing edit distance efficiently (e.g., [9, 14, 3, 8, 2, 4]).

In a previous paper [10], we introduced a new application of edit distance in the
realm of pen computing. Approximate ink matching, or AIM, is the concept of matching
handwritten/drawn queries against an existing ink database. While ink is an expres-
sive two-dimensional medium, its creation, when viewed in the temporal domain, is an
inherently one-dimensional process: the path of a stylus tip against a writing surface.
Ink can be treated as a string by taking pen input from a digitizing tablet and seg-
menting it into strokes, extracting a standard set of features (e.g., stroke length, total
angle traversed), and clustering the resulting vectors into a smaller number of basic
stroke types. It then becomes possible to compare strings over this “ink” alphabet
using approximate string matching techniques.

For handwritten text (English and Japanese, cursive and printed), our empirical
studies indicate that this approach, which is writer-dependent, performs quite well.

*Presented at the Second Annual South American Workshop on String Processing, Valparaiso,

Chile, April 1995.

However, the situation becomes more complicated for pictorial data. Certain substruc-
tures within a larger image can correspond stroke-for-stroke, but these basic “blocks”
may have been drawn by the user in an otherwise arbitrary order. Figure 1 demon-
strates this; the two trees in Picture A are drawn last, while the tree in Picture B
is drawn first. Moreover, if the goal is to search a database, the best match may be
imprecise in the sense that certain elements are omitted or repeated. This phenomenon
is also illustrated in Figure 1. Intuitively, we judge the two pictures to be quite similar,
even though Picture A has an extra tree and is missing the car and driveway. Exist-
ing string matching algorithms are not flexible enough to capture these forms of block

motion.
Abstract Basic Blocks Q

®

; | 51}

Picture A

Picture B

®EE®®EE@E

Time

A Block String Matching

Figure 1: Approximate string matching applied to hand-drawn pictorial data.

Likewise, in genetic sequence alignment, some biologists suggest that comparisons
based on simple edit distance may fail to account for certain common evolutionary
processes [7]:

Global dynamic programming alignments of such rearranged sequences
yield unpredictable, evolutionarily confusing results. ... Global alignment
methods are generally incapable of dealing with intrasequence rearrange-
ments, yet this phenomenon is quite common among mosaic and repetitive
sequence proteins. [pg. 96]

So-called “local” schemes, such as the well-known BLAST algorithm [1], can de-
termine subregions of similarity within two longer sequences. However, to the best of
our knowledge, there presently exists no fully automatic technique for correlating the
relationships between the multiple local matches returned.

Manual inspection of a “dot matrix” plot appears to be the most popular approach

for addressing this problem today.! As shown in Figure 2, to compare two sequences
A and B, a table of size |A| x |B| is built and a dot placed at the (z,7)" entry if
the " symbol of A is the same as the j* symbol of B. To reduce noise, a minimum
number of exact matches within a window centered around the location in question can
be required before a dot is placed there. In our example, the window is 25 nucleotides
and must contain at least 12 matches. The resulting plot is then examined visually for
interesting similarities.

Dot Plot of B.taurus DNA sequence 2 x B.taurus BolFN-alpha A mRNA
Base Window: 25 Stringency: 12 Points: 732

— 100

B.taurus DNA sequence 2 (0to 194)
. RH -
™~
RS

B.taurus BolFN-alpha A mRNA (351 to 677)

Figure 2: Dot matrix plot of two short genetic sequences.

In this paper, we describe a family of models for the string block edit problem.
These formalize in a succinct and rigorous way the notions illustrated in the preceding
examples. We prove that certain variants are NP-complete, and give polynomial-time
algorithms for the remainder. We conclude the paper by suggesting some directions for
further research.

2 Block Edit Models

Standard edit distance allows the relationship between two strings to be expressed
graphically by means of a trace. An example showing how “quick brown fox” can be
mapped into “kick draw flax” is:
q u i ¢ k b r
L
k 0 i ¢ k d r
The special symbol ‘" is used to represent the ab

—<— 0
O — =
Mo—

f
Lol
f

v <— O
2« =
= — O

ence of a character. A transformation

~—~

from a character into @ is considered a deletion (e.g., u —), from @) into a character

LAlso from [7]: “Dot matrix analysis is the only currently available tool that deals sensibly with
this phenomenon.” [pg. 96]

an insertion (e.g.,) — a), and from one character into another, different character a
substitution (e.g., ¢ — k).

As a rule, the arrows in a trace are not allowed to cross.? Moreover, the character-
to-character correspondence is determined on an individual basis, with no regard to
higher-level structure. Consider now a trace comparing the strings “hello world” and

“world hello”:

0 0
! !

= T
=< O
= =
= =
=< O
— e
O — O
S =
D — =
—_—— =
— i =

!
0

2 =
0 +— ©

r
!
r
The “cost” of this alignment is five deletions and five insertions. By overlooking the
higher-level structure — the motion of the word “hello” from the beginning of the string
to the end — traditional edit distance (e.g., [16]) produces a trace that seems to miss
the true relationship between the two strings. There is no obvious way of taking the
result returned by simple edit distance and using it to generate a more representative
block matching.

Figure 3 presents a block trace relating the strings “The quick brown fox jumps over
the lazy dog.” and “Jump over the brown fox, lazy dog. Quick!” This captures both
the low-level notion of approximate string matching (e.g., the close similarity between
the blocks “jumps over the” and “Jump over the”), as well as the higher-level concept
of block motion. We seek algorithms capable of producing traces such as this.

| String A |
The quick brown fox jumps over the lazy dog.
k\
A
Jump over the brown fox, lazy dog. Quick!
| String B |

Figure 3: Example of a block trace.

An earlier work examined a special case of this problem where the blocks themselves
must match exactly [13]. The results we are about to present are significantly more
general than this as blocks may be edited to create a better correspondence.

We now give a more formal definition of a string block edit model.

2.1 Substring Families

Assume we have a finite alphabet ¥. Let A = [aqaz...0a,] and B = [b1by...b,] be
strings over the alphabet, a;,b; € ¥. We say that a t-block substring family of A, Al
is a multiset containing ¢ substrings of A, some of which may be identical. In the
following, we will write A|, = {AM, ..., A} with the understanding that the A()’s

?This is dictated by the model and the dynamic programming algorithm used to perform the
computation.

need not be distinct. A corresponding t¢-block substring family of B, B, is a multiset
of t substrings of B.

If the substrings in A|; do not overlap, we say the family is disjoint. If each character
of A is contained in some substring, we say the family represents a cover of A. Thus,
Figure 1 shows a mapping between substring families such that Als, on the left, is a
disjoint cover, and Bls, on the right, is neither disjoint nor a cover. Figure 2 illustrates
that substantial overlap can occur between candidate substrings of genetic sequences,
hence there is an argument for preferring substring families that are not necessarily
disjoint in this case. Finally, in Figure 3 one of the substring families is a disjoint
cover, while the other is disjoint but not a cover.

In general, we may require that either or both of the substring families be disjoint
and/or a cover. Each possible combination of constraints represents a particular block
edit model. For succinctness, we introduce the following notation:

C must be a cover,

C need not be a cover,

D must be disjoint,

D need not be disjoint.
To refer to the model in which the first substring family must be a disjoint cover,
and the second substring family is unconstrained, we write CD-CD. (Note: from a
computational standpoint, by symmetry CD-CD is exactly the same problem.)

2.2 Block Edit Distance

Before defining block edit distance, we require an underlying function dist that returns
the cost of corresponding a substring of A with a substring of B:

dist: {i,j | 1<i<j<|A}x {kI|1<k<I<|B} =R

In practice, it is natural to assume that dist is traditional string edit distance, but any
cost function could be used. The algorithms we give work for arbitrary measures, and
the reductions work for bi-valued measures, so the generality of the cost function does
not affect the difficulty of the problem.?

The block edit distance B between two strings A and B is determined by finding
the best way to choose substring families of A and B and correspond each member
of Al; with some member of B|;. For each pairing, a cost is assessed based on the
distance between the two substrings.* The correspondence between blocks is given
by a permutation ¢ € S; from the symmetric group on ¢ elements. We impose the
additional restriction that if i # j and AW = AU, then BUW) £ BEU) That is, a
particular pair of blocks cannot be placed into correspondence more than once. This
allows us to keep the measure from diverging if a negative-cost pairing exists and the
substring families do not have to be disjoint. More formally,

3As per common usage, we refer to dist as a “distance” when in fact it is more general than this: it
need not be symmetric, can take on negative values, and does not have to obey the triangle inequality.

4The distance between two blocks could be augmented with information about how far apart they
are in the original A and B strings. The algorithms we shall present can be trivially extended to allow
for this.

CD CD CD CD
_ O(m?n)
CD Section 5
_ O(m?n) | NP-complete
CD Section 5 Section 4
— O(m?n) | NP-complete | NP-complete
CD Section 5 Section 4 Section 4
D O(m?n) | NP-complete | NP-complete | NP-complete
Section 5 Section 4 Section 4 Section 3

Table 1: Summary of the results presented in this paper.

B(A, B) = min min min {Z dist (A(), B(U(i)))} (1)

11 A|t B|t CTES(

Equation 1 does not specify whether the particular substring families must be covers,
disjoint, or both. In this paper, we examine the various cases, show which are hard,
and give algorithms for those that are solvable in polynomial time. Table 1 summarizes
our results.

3 CD-CD Block Edit Distance is NP-complete

In this section we show that if both substring families must be disjoint covers, the block
edit distance problem is NP-complete. In a later section, we extend the same reduction
to the other hard versions of the problem.

Theorem 1 CD-CD block edit distance is NP-complete.

Proof. Membership in NP is trivial. We must show that the problem is NP-hard.
The reduction is from uniprocessor scheduling. From Garey and Johnson [5]:

Sequencing With Release Times and Deadlines

Instance: Set T' of jobs and, for each JoB; € T, a length I(t) € Z*, a
release time r(1) € Zg, and a deadline d(t) € Z*.

Question: Is there a one-processor schedule for 7' that satisfies the release
time constraints and meets all the deadlines?

We take the string alphabet to be ¥ = {0,1}. Assume that the number of jobs in
the scheduling problem is N = |T'|. For n € {1,..., N} we define the string #(j) to be
N—j J N

. S
#(7)=0...01...10...0

Thus, for all 7, [#(7)| = 2N, and #(0) = 02V,

We must now specify two strings and a cost function as input to the block edit
distance algorithm. String A will represent time, and string B will represent the jobs.
Let D be the latest deadline, D = max{d(¢)}. Strings A and B will have length 4N?D.
Note that since the scheduling problem is NP-hard in the strong sense, we can assume
that the size of the input is O(D), so these strings are polynomial-sized.

We assume without loss of generality that >;/(¢) = D. That is, if all jobs are
scheduled in time, then all units of time through the final deadline will be used. If this
is not the case, we can add to the list of jobs D —3"; [(i) additional jobs with length 1,
release time 0, and deadline D to meet the constraint without changing the problem.
Figure 4 depicts the two strings.

< 4N 2D >|

String A = Timeq | Timey | TiMEg oo TimE; s TimMeEp.1| TiMEp

String B = JoB e Jos; s Joep

Figure 4: Strings A and B for the NP-completeness reduction.

Each of the time-step blocks in string A is a filled-in copy of the template shown
in Figure 5. We need some new notation for referencing these substrings. We will
write A[TIME;] to refer to the '" time-step of A, and A[TIME;, CHUNK;] to refer
to the j** “chunk” of 4N characters in substring A[TIME;]. As the figure shows,
A[TIME;, CHUNK;] is made up of two components, each of length 2N. The first is
#(j) if JOB; may start at time-step ¢ (i.e., if and only if r(j) < ¢), and #(0) otherwise.
Similarly, the second component is #(j) if JOB; may end at time-step ¢ (i.e., if and

only if d(j) > i), and #(0) otherwise. Each time-step block represents a string of 4 N?
characters.

AN 2

x
Yy

CHuNky CHuNK CHunk; CHuNky

T
A[Tivgj] = eee A[Time;,CHunkj] eee

#(j) if Jos; may start at Time;, #(0) otherwise J
#(j) if Jos; may end at Time;, #(0) otherwise

Figure 5: Template of a time-step block.

At this point, we have completely specified string A. We now turn to the structure
of string B by specifying the job blocks in Figure 4. Following the notation introduced
previously, we will write B[JOB,] to refer to the entire block JOB;. Each such block is
a string consisting of {(j) - 4N? characters.

Within B[JOB,], each of the [(j) substrings of 4N?* characters corresponds to a time-
step, so we will write B[JOB;, TIME;] to refer to the i'" group of 4N? characters within

B[JoB;]. Finally, these 4N? characters are broken into N “chunks” of 4N characters,
each of which corresponds to a particular task. We will refer to the £ chunk within
time-step ¢ in job j as B[JOB;, TIME;, CHUNK;]. Within B[JOB;, TIME;], all chunks
except those numbered j will consist of 4V 0’s.

We now give the procedure for assigning substrings to each of the chunks. As in
the construction of string A, the first and second groups of 2N characters are used to
hold information about starting and ending a job, respectively:
#(0) otherwise
#(l) ity = l(l) (3)
#(0) otherwise
#(0)

start(i,j) = {

end(i,j) = {

0) || #(0) i # n

B[JoB;, TIME;, CHUNK;| = {start(ivj)Hend(i?j) otherwise

B[JoB;, TIME,, CHUNK;] has the effect of constraining job ¢ to begin at or after its
release time, while B[JOB;, TIME;;, CHUNK;] constrains it to end at or before its dead-
line. This is depicted in Figure 6.

< I() + 4N'2 >
B[Jogj] = (TiME,) (TiME,) oo

\ B[Josj, Time4] \
T - o)

B[Josj, Time1,CHunk(]

< #() #(0) >

Figure 6: Template of a job block.

This completes the specification of both strings. All that remains is to give the
cost function, dist. This function returns 1 for all pairs of substrings with the following
exception.

dist(s1,s2) = if and only if there exist indices iy, i3, and j such that the
0 following conditions hold:

1. sy = A[TIME,, |- - - A[TIME,,
2. sy = B[JOB;]

3. iy — i1+ 1 = 1(j)

4. r(j) < and d(j) > 1o

This particular cost function is formulated so that a zero-cost matching, if one
exists, yields a solution to the uniprocessor scheduling problem. We now prove a series
of lemmas that will allow us to equate block string matches with job schedules.

Lemma 1 The substring #(j), 7 > 0, occurs in strings A and B only at 2N block
boundaries.

Proof. Break both strings into blocks of length 2N. By their construction, each block
consists of #(i) for ¢ > 0. Any substring ¢ of length 2N will overlap at most two such
blocks, say s; and s5. Create s = s1 || s2. For ¢ to equal #(j) for some j > 0, there
must exist a 1-0 transition in s that corresponds to positions N and N + 1 in ¢. But
such transitions occur in at most two places in s: at positions N and N + 1 (i.e., s1),
and at positions 3N and 3N +1 (i.e., s2). That is, ¢ can equal #(j) if and only if ¢ = s;
ort = ss.

Thus, the substring #(j) occurs only at 2N block boundaries for j > 0. This
completes the proof of Lemma 1. O

At this point we require some additional notation. Consider two substrings, s;
drawn from A and s, drawn from B. Let s be the first 4N? characters of s;, and
st be the last 4N? characters of s;. Our goal is to show that the distance function
defined earlier will never return 0 for substrings that are not taken from appropriate
locations in A and B. We do so by presenting two sets of definitions and accompanying
lemmas. The first defines a syntactic property between two strings and shows that no
other substrings can fulfill the zero-cost conditions of dist. The second makes precise
the notion of “appropriate location” and relates it to the syntactic property.

Definition 1 Substrings s, and sy have the match property if the following conditions
hold:

1. They both have length 1(j) - AN? for some 1 < j < N.
2. The (25 — 1) block of 2N characters in 5% and s are both #(j).

3. The 25 block of 2N characters in s} and sy are both #(j).
We now show that any two substrings with distance 0 must have the match property.
Lemma 2 [f dist(s1,s2) =0, then substrings s; and sy have the match property.

Proof. By the definition of dist and the construction of strings A and B, the length
condition for the match property is clearly satisfied.

We now examine the (25 —1)% block of 2N characters in s{ and 5. For the time-step
substring, s;, this will be the first 2N characters of A[TIME;,, CHUNK;], and assuming
that JOB; may start at time-step ¢; (we know that r(j) < i; from the definition of
dist), this will be #(j). Likewise, for the job substring, sy, this will be the first 2NV
characters of B[JOB;, TIME;, CHUNK;], which by definition is also #(j).

Next, we examine the 25 block of 2N characters in s} and s. For the time-step
substring, this corresponds to the last 2V characters of A[TIME;,, CHUNK;], which,

129

assuming JOB; can terminate at time-step i3 (again, this is true from the definition of
dist), is #(j). For the job substring, this block corresponds to the last 2N characters
of B[JoB;, TIME,(;y, CHUNK;], which is also #(j).

This completes the proof of Lemma 2. O

Finally, we must guarantee that no spurious matches can occur.

Definition 2 A set of indices 11, 13, and j, and the substrings they induce, s, =
A[TIME,, |- - - A[TIME,, | and sy = B[JOB;], are valid if io —ey +1 =1(3), r(j) < t1, and
d(j) > is.

Note that s; and s, are not considered valid if either is taken from a different
position in A or B, even if the resulting substrings are identical. Validity is a property
of the indices into A and B.

Lemma 3 If substrings s; and sy have the match property, then they are valid.

Proof. We must show that substrings of A and B will match only if they represent a
particular job and a feasible time-slot for the job. The match property requires that
the string #(j) appear four times between the two substrings, for some j in the range
[1, N]. By Lemma 1, we can conclude that any erroneous matches could come about
only as a result of #(j)’s placed during the construction of A and B, and not from
“random” patterns appearing in the strings by coincidence.

Thus, s; and sy must begin and end on 2N block boundaries within A and B,
respectively. Further, since s; and sy have the match property, the string #(j) must
appear as the (25 — 1) block of 2N characters at the beginning of s;, and as the 2;"
block of 2N characters in the last 4 N? characters. This forces substring s, to be aligned
on a 4N? boundary, so it must indeed represent a legal sequence of time-steps. In this
case, the details of the construction of A guarantee that job j can be scheduled during
this time-slot and meet its release and deadline constraints.

The proof for substring s, is immediate, since #(j) must appear exactly twice, at
specific locations, by the match property. By the construction of B, this can only occur
if sy represents job j. This completes the proof of Lemma 3. O

We can now prove the primary lemma that leads directly to our theorem.

Lemma 4 The uniprocessor scheduling problem has a solution if and only if the cor-
responding string block edit problem has a matching that is a zero-cost disjoint cover.

Proof. If the scheduling problem is solvable, then by the definition of dist this will yield
a zero-cost block matching. That the matching must be disjoint is clear (otherwise two
jobs will have been scheduled for the same time-step). The fact that it is a cover follows
from our earlier assumption that the total duration of the jobs consumes all time-steps
up to the latest deadline.

Assume now that a matching exists that is a zero-cost disjoint cover. Since the cost
function returns only 0 or 1, by Equation 1 the cost for each pair of blocks must be 0.
Hence, by Lemma 2, all of the pairings have the match property. Applying Lemma 3,

this means they correspond to valid substrings and therefore represent an assignment
of jobs to time-slots that satisfies the constraints of the scheduling problem. By the
construction of string B, all of the jobs are scheduled. This completes the proof of the
lemma. O

With Lemma 4, we have completed the proof of Theorem 1, showing that CD-CD
block edit distance is NP-complete. O

4 NP-completeness of Other Models

In this section, we show that essentially the same reduction works for the other hard
models listed in Table 1.

Theorem 2 The CD-CD, CD-CD, and CD-CD block edit distance problems are NP-

complete.

Proof. As before, membership in NP is obvious, so we need only demonstrate how the
reduction can be applied to these models.

Theorem 1 states that the problem is hard if both substring families must be disjoint
covers. The same proof can be used if one substring family need not be a cover. Recall
that string A represents time-steps. Clearly a block matching that does not use all of
the available time, but still schedules all of the jobs in a valid way, is just as difficult
to achieve. This shows that CD-CD is NP-complete.

Likewise, the problem remains difficult if one substring family need not be disjoint.
For this variant we use the same reduction, but do not require the substring family
chosen from B to be disjoint. Thus, all jobs must be matched (i.e., B must still be a
cover) to distinct units of time (i.e., A must be disjoint), but jobs can also be re-used
to help cover all of the time-steps. Again, the original reduction need not be changed.
This shows that CD-CD is NP-complete.

Combining these two observations, if the time string need not be covered, and the
job string need not be disjoint, the resulting schedule will still be valid, so the reduction
holds. This shows that CD-CD is NP-complete, completing the proof of the theorem.
O

To finish the last two hard entries in Table 1, we must make minor changes to the
cost function.

Theorem 3 The CD-CD and CD-CD block edit distance problems are NP-complete.

Proof. For the CD-CD model, we can adapt the reduction fairly simply. In this case,
neither string must be disjoint, so time-steps and jobs can be re-used more than once.
We change the distance measure so that a valid match between JOB; and a particular
sequence of time-steps has cost 1, and all other substring pairings have cost co. Then if
a schedule exists, a string matching can be constructed with total distance N, otherwise
no such match can be found.

The proof for the CD-CD model is similar. If neither string must be covered,
the problem makes sense only if negative distances are allowed (otherwise the best
match would always return empty substring families for both strings). We modify the
distance measure so that a valid match has cost —1. Since both substring families must
be disjoint, no time-step or job can be re-used. Hence if a matching with distance —N
can be found, it must correspond to a schedule. If no such match can be found, then
no schedule exists. This completes the proof of the theorem. O

5 Polynomial-Time Algorithms for Block Editing

We now present a family of polynomial-time algorithms to compute block edit distance
when at least one of the substring families is unconstrained.

Say that B is the string whose substring family need not be disjoint or a cover.
For the discussion that follows, it will be convenient to assume we have an array W'
defined as below for 1 < < j < m:

W'(i,) Erilé?{dist(ai...aj,bk...bl)} (5)

That is, W(i,) gives the value of the best possible match between «;...a; and any
substring of B. Since portions of B can be re-used, and it need not be covered, the infor-
mation in W' is sufficient to perform the needed calculations for the CD-CD problem;
we will define similar matrices W for the other problems in their respective subsections.
We write T'(W) to mean the time required to compute a matrix W, and shall discuss
later how W can be computed more efficiently than the naive implementation when
dist 1s standard edit distance.

Consider the diagram shown in Figure 7. Each of the intervals ¢; . ..a; in the figure
represents a substring of A, and is labelled with W'(z, j). Note that W'(7,) represents
the best match between the single character a; and any interval of B. As before, a
substring family of A is a multiset of substrings (i.e., intervals). If the intervals do not
overlap, the family is disjoint; if the union of the intervals is the entire line, the family
is a cover. Enforcing or relaxing these constraints (all relative to string A) results in
different versions of the block edit distance problem.

It is clear from Figure 7 that W' induces a complete interval graph, a well-studied
class for which most known problems have efficient solutions [11, 6]. We now present a
series of dynamic programming recurrences for the variants of block edit distance that
admit poly-time solutions, based on choosing intervals in a way that satisfies certain
constraints.

We define M(2) to be the best block match between ay ... a; and B for the particular
model we are interested in. Once we have computed M for ¢ = 1,2,...,m (recall that

|A| = m), our final answer is B(A, B) = M(m).

5.1 CD-CD Block Edit Distance

We begin with the CD-CD block edit distance problem, in which the substring family
of A must be both disjoint and a cover. We can compute M using the following

4 o W1(3,8) = cost of best match between aj...ag and any substring of B
15
-2 10 13 4
7 6 7 5
—_——
3 1 2 1 -1 2
e e L [I e B e e I Tl e e [e e e e e e e cee — b —
a a3 ag am
| String A |
Figure 7: Possible string matches viewed as intervals.
recurrence:
Algorithm CD-CD M(i) = min{M(j) + W' (j +1.4)} (6)

J<t

In this recurrence, M(i) allows the best match in B corresponding to aji1...a; to
be added to the optimal solution for a; ... a; for all possible “cuts” in the string, 7. It is
easy to show this satisfies the requirement that the substring family for A be a disjoint
cover. By dynamic programming, the value of M(¢) can be computed in time O(z)
given all previous M(j <). Thus, the total time to compute M (m) is O(m?)+T(W).

5.2 CD-CD Block Edit Distance

We now address the problem where the substring family must be disjoint, but need not
cover A. For this case we define another W matrix:

Wi, j) = min{W'(7, j), 0} (7)

Used in place of W1 in Equation 6, W% allows sections of A to be “skipped” whenever
it is advantageous to do so. The recurrence is:

Algorithm CD-CD M(i) = min {M() + W' + 1,4) | (8)
1<

The time bound is exactly the same as for Equation 6, namely O(m?) + T(W).

5.3 CD-CD Block Edit Distance

Next, we consider the variant in which the substring family of A must be a cover, but
need not be disjoint. Recall that block edit distance as defined in Equation 1 does not
allow the same block pairing to be used more than once. Here we see why this should
be so; otherwise the block edit distance between two strings A and B could be —oo (if
a negative-cost pairing exists). We require a version of W that allows the substring in

A to match one or more intervals in B:

. Wi,) if W(i,7) >0
+ — 7 ’
W™(,j) = { Sp min {dist(a; ... a;j, by ... b;),0} otherwise 9)

Similarly, we define W* to represent the cost of zero or more matches:
Wi, j) = min {W¥(i,),0} (10)

We can now use the following recurrence to allow overlapping intervals:

Alg. CD-CD M) = min{ min M(k)—l—W+(j—|-1,i)+ Z W*(k,l)} (11)

J<i | kelii-] keli+2,]

Intuitively, the recurrence can be understood as follows: we require at least one
interval in B to cover a;, yielding the W+ term. We can also include other intervals
ending at a;, but only if they lower the overall cost, giving us the W* term. Finally, we
combine this with any previous best matching ending somewhere in the range [j,7 — 1]
(recall that the substring family of A must be a cover), which explains the M term.

Note that this can still be computed in O(m?) time, despite the additional min-
imization and summation. If the outer minimization is taken in reverse order (i.e.,
J=(i—1),...,1), then for fixed 7 the value mingef;_1 ;_1] M(k) can be computed from
mingep;i—1) M(k) in constant time:

min M(k):min{/\/t(j—l), min M(k)} (12)

ke[j—1,i-1] kels,i—1]

A similar “trick” applies in the case of the summation. Hence, the running time remains

O(m?*) + T(W).

5.4 CD-CD Block Edit Distance

Finally, we give a recurrence to solve the problem when neither substring family is
constrained. We can extend the ideas of the previous subsection to solve this problem:

Alg. CD-CD Aﬂwznmn{M@—U+WﬂU+L0+ > W%hw} (13)

< - .
I kelj+2.i]

The M(i — 1) term incorporates the best shorter matching (one which does not
include a;), and the use of W* frees the substring family of A from having to be a
cover. Since any new interval added to the matching at step ¢ must overlap a;, and
no interval in the best so far may contain «;, we maintain the invariant that no block
pairing is used more than once.

Again, this recurrence can be evaluated in time O(mz) +T(W).

5.5 Time Complexity

As we indicated, each of the recurrences requires O(m?) time, where m = |A|. However,
they all depend on having a matrix W, so the full time bound is O(m?) + T'(W).

If we build W' according to its definition (i.e., Equation 5), for example, we must
fill in O(m?) entries by comparing O(n?) values, each of which can take time O(mn) to
compute when dist is standard string edit distance. Thus, naively, T(W?) = O(m°n?).
There is, however, a well-known modification of the basic dynamic programming algo-
rithm that allows the best match in B for a fixed substring in A to be found in time
O(mn). This saves a factor of O(n?) over the naive approach. Furthermore, a property
of this computation is that the table generated for matching «;...a, to B contains in-
formation about the best substring matches for a;...a as well, for ¢ < k < n. Hence,
only O(m) such tables need be built to compute W*, saving another O(m). Thus,
T(W') = O(m?*n).

All of the other versions of W can be computed from W' and the tables used to build
it in less time than this. Hence, in general, T(W) = O(m?n). Since this dominates the
time needed to evaluate the recurrences presented earlier, the full time complexity in

all cases is O(m?n).

6 Conclusions

In this paper we have examined the concept of string block edit distance, where two
strings A and B are compared by extracting collections of substrings and placing them
into correspondence. This model seems to account for certain phenomena encountered
in important real-world applications, including pen computing and molecular biology.

As we demonstrated, the basic problem admits a family of variations depending
on whether the strings must be matched in their entireties, and whether overlap is
permitted. The problem is NP-complete if both substring families are constrained in
any way, and solvable in time O(m?) + T(W) otherwise. We gave an algorithm for
computing W in O(m?*n) time — it would be interesting to know whether this result
can be improved.

Another open question concerns the existence of approximation algorithms for the
more difficult versions of the problem (especially if such algorithms also overcome the
bottleneck of having to compute W exactly). While the recurrences presented in Sec-
tion 5 for the poly-time cases are not guaranteed to return a disjoint cover for string
B, this does not exclude the possibility under some scenarios. It may be instructive to
attempt to characterize just when these additional constraints can be satisfied.

Acknowledgements

The genetic sequence dot matrix plot (Figure 2) was generated using “Dotty Plotter,”
a program written by Don Gilbert. The authors would like to thank Professor Udi
Manber for pointing out an earlier paper on a related topic ([13]).

References

1]

2]

[10]

[11]

[12]

[13]

[14]

[15]

S. F. Altschul, W. Gish, W. Miller, E. W. Myers, and D. J. Lipman. Basic local
alignment search tool. Journal of Molecular Biology, 215:403-410, 1990.

W. L. Chang and E. L. Lawler. Approximate string matching in sublinear expected
time. In Proceedings of the Symposium on Foundations of Computer Science, pages

116-124, 1990.

Z. Galil and R. Giancarlo. Data structures and algorithms for approximate string
matching. Journal of Complexity, 4:33-72, 1988.

7. Galil and K. Park. An improved algorithm for approximate string matching.
SIAM Journal on Computing, 19(6):989-999, 1990.

M. R. Garey and D. S. Johnson. A Guide to the Theory of NP-Completeness.
W.H. Freeman and Company, 1979.

M. C. Golumbic. Algorithmic Graph Theory and Perfect Graphs. Academic Press,
New York, 1980.

M. Gribskov and J. Devereux. Sequence Analysis Primer. Stockton Press, 1991.

G. M. Landau and U. Vishkin. Fast parallel and serial approximate string match-
ing. Journal of Algorithms, 10:157-169, 1989.

R. J. Lipton and D. P. Lopresti. A systolic array for rapid string comparison.
In Henry Fuchs, editor, Proceedings of the 1985 Chapel Hill Conference on Very
Large Scale Integration, pages 363-376. Computer Science Press, 1985.

Daniel Lopresti and Andrew Tomkins. On the searchability of electronic ink. In
Proceedings of the Fourth International Workshop on Frontiers in Handwriting
Recognition, pages 156-165, Taipei, Taiwan, December 1994.

F. S. Roberts. Graph Theory and Its Applications to Problems of Society. STAM,
Philadelphia, PA, 1978.

D. Sankoft and J. B. Kruskal, editors. Time Warps, String Fdits, and Macro-
molecules: The Theory and Practice of Sequence Comparison. Addison-Wesley,
Reading, MA, 1983.

W. F. Tichy. The string-to-string correction problem with block moves. ACM
Transactions on Computer Systems, 2(4):309-321, November 1984.

E. Ukkonen. Algorithms for approximate string matching. Information and Con-

trol, 64:100-118, 1985.

R. A. Wagner. On the complexity of the extended string-to-string correction prob-
lem. In Proceedings of the 7th ACM Symposium on Theory of Computing. Associ-
ation for Computing Machinery, 1975.

[16] R. A. Wagner and M. J. Fischer. The string-to-string correction problem. Journal
of the Association for Computing Machinery, 21:168-173, 1974.

