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Abstract

In this paper, we examine the effects of simulated
OCR errors on Boolean query models for information
retrieval. We show that even relatively small amounts
of such noise can have a significant impact. To address
this issue, we formulate new vartants of the traditional
models by combining two classic paradigms for dealing
with tmprecise data: approzimate string matching and
Juzzy logic. Using a recall/precision analysis of an ex-
periment involving nearly 60 million query evaluations,
we demonstrate that the new fuzzy retrieval methods are
generally more robust than their “sharp” counterparts.

1. Introduction

When developing models and algorithms for infor-
mation retrieval, it is often convenient to assume that
the contents of the database are, in a sense, perfect: the
text has been carefully edited and proof-read, all of it
belongs, nothing is missing, and there are few if any
errors. It is becoming increasingly evident, however,
that the explosive growth of on-line services coupled
with the informal nature of electronic communications
will result in a broader range of document qualities
than encountered in the past. Text taken directly from
such sources (e.g., Usenet newsgroup postings, WWW
pages) frequently contains typographic errors, alter-
nate spellings, non-traditional punctuation, and vari-
ous sorts of spurious information.

Moreover, optical character recognition (OCR) and
document image analysis (DIA) technologies have im-
proved to the point that fully autonomous electronic
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filing systems are now becoming feasible. A wide va-
riety of data can be extracted from a scanned page.
While many of these attributes may prove useful for
later recall, the results from OCR’ing the text are par-
ticularly important from the standpoint of retrieval.

Unfortunately, unattended OCR still has the po-
tential to introduce significant levels of “noise” in a
database. Even state-of-the-art technology produces
garbled output when confronted by unanticipated text
formatting (e.g., shaded backgrounds, unusual fonts,
white-on-black characters). Accuracy rates can drop to
80% or lower for document images that humans have
no trouble reading [18].

Rather than assume such data will be excluded from
digital libraries, it seems appropriate to study its im-
pact and 1dentify ways of mitigating the damage. More
specifically, in this paper we examine the effects of sim-
ulated OCR errors on Boolean query models for in-
formation retrieval. As we shall show, even relatively
modest amounts of noise can be deleterious.

We also formulate new variants of the traditional
models by combining two classic paradigms for dealing
with imprecise data: approximate string matching and
fuzzy logic. For the most part, the fuzzy approaches
are more robust than their “sharp” counterparts. All
of the retrieval models are presented using the same
standard notation, making it easier to compare them
and judge their similarities and differences.

The remainder of the paper is organized as follows:
in the next section we briefly survey previous work in
the area. Section 3 describes the various retrieval mod-
els and algorithms. We discuss evaluation criteria in
Section 4. In Section 5 we present experimental re-
sults involving 59.6 million queries against artificially
degraded news articles taken from the Internet. Fi-
nally, we offer our conclusions in Section 6.



2. Related research

There have been a number of previous studies on
OCR errors and their impact on information retrieval.
For example, Taghva et al used output from several
commercial OCR, packages to evaluate the accuracy of
the SMART system, which employs the vector space
model [20, 23]. They concluded that when recognition
rates are high, the effects for long documents are mini-
mal, but that for short documents under certain term-
weighting schemes, retrieval accuracy decreases rapidly
as the number of OCR errors increases. In other pa-
pers, they examined the BASISplus system [22], which
is based on a Boolean retrieval model, and the IN-
QUERY system [21], which uses probabilistic IR. Their
conclusions in these cases were similar.

Croft et al used a synthetic OCR error genera-
tor to study the effects of noise on a probabilistic
retrieval model [2]. These results also show that
such damage can have an impact on short documents.
Recently, Tsuda et al studied how simulated single-
character substitutions can affect a vector space clus-
tering model [24]. They concluded that the system in
question may be able to tolerate relatively large num-
bers of errors. A similar conclusion was reached by
Tttner et el in a study involving faxed documents [8].

Several papers have also suggested ways of coping
with OCR noise in the design of retrieval systems.
For example, Pearce has proposed using n-grams when
building hypertext links from the output from an OCR
package [17]. In a paper by Myka and Glintzer, pattern
matching techniques for attempting to reduce the im-
pact of noise are discussed [14]. Wiedenhofer presents
an indexing procedure that employs character hypothe-
ses lattices which are post-processed in various ways to
eliminate suspected errors [27].

The research we report here can be distinguished
from each of these earlier works in one or more ways.
Unlike studies involving commercial systems that treat
the TR algorithm and/or the OCR error source as a
“black box,” we specify both of these explicitly, mak-
ing it possible to perform a more detailed compari-
son of the relationships between the two. The new
fuzzy retrieval models we present also are quite differ-
ent from those examined previously. Finally, our use
of a Boolean query language allows for a richer range
of inputs than papers where the search is based on a
single term.

3. Retrieval models and algorithms

For the purposes of relating the traditional retrieval
models with several new ones to be described later, we

find it helpful to adopt a consistent, precise notation.
While this approach may seem overly formal at times,
it makes it possible for us to compare directly the var-
ious model components.

We begin with some definitions. A string, S =
$189...8,, 18 a finite sequence of characters chosen
from a finite alphabet, s; € X. String A = a1as...an
i1s a substring of string B = bybs...b, if m < n and
there exists an integer k in the range [0, m — n] such
that a; = b4 for i =1,2,...,m.

A query term, T, and a document, D, are both
strings. A database A is a finite set of documents,
A ={Dy,Ds,...,D,}. A membership function M is
a mapping between term-document pairs and a specific
set of values in the interval [0, 1]. Although the precise
range of M depends on the retrieval model, generally 1t
can be interpreted as the degree to which a particular
document is a member of the set of all documents con-
taining the given term. In the extreme, M(T,D) =1
when the term’s presence in the document is strong,
and M(T, D) = 0 when the term is completely absent.

In the case of the Boolean operators AND, OR, and
NOT, we distinguish between the forms that are writ-
ten as part of the query (e.g., (cats AND dogs)) and
the functions themselves. In the case of AND and OR,
the functions are Fanyp and Fopr and they map tuples
from the range of M back into the range of M. Fnyor
is defined similarly, but operates on a single value in-
stead of a tuple.

A simple query Q written as (71 OP T5) is “run” on
a particular document D by evaluating:

QD) = Fop(M(T1, D), M(T3, D)) (1)

The extension to more complex queries containing mul-
tiple operators and increasing numbers of terms is
straightforward.

3.1. Boolean retrieval

Perhaps the simplest, most familiar, text retrieval
model is the Boolean model. In this case, the range
for the membership function is {0, 1}, and the function
itself is:

1 if T is a substring of D
0 otherwise

mer.) = { 8
The operators correspond to the standard Boolean
ones, as indicated in Table 1.

A typical Boolean query might be
((Clinton AND Gore) OR U.S. leaders), which is in-
terpreted to mean all documents containing the sub-
strings “Clinton” and “Gore” or the substring “U.S.

leaders”.



‘ Xy H Finplzy)  Flrle,y) FRor(x) ‘
0 0 0 0 1
0 1 0 1 1
1 0 0 1 0
1 1 1 1 0

Table 1. Standard Boolean operations.

3.2. Fuzzy Boolean retrieval

A shortcoming of traditional Boolean retrieval is
that it requires the terms to appear exactly in the doc-
ument as substrings. If, for example, the OCR, process
used to generate a particular database has made the
common mistake of recognizing an ‘I’ (lower-case ‘el’)
as an ‘I’ (upper-case ‘eye’), then the previous query
may fail for some documents because the specific se-
quence of characters “Clinton” is no longer present.

Rather than insist that a query term appear exactly
in the document, we might instead ask the question,
“Is there anything similar to the term in the docu-
ment?” In other words, the membership function has
a continuous range:

M(T, D) = (3)
1 if T" appears exactly in D
1 — € if something much like 7" appears in D

€ if something a bit like 7" appears in DD
0 if nothing resembling T" appears in D

Such a model can be realized by combining two classic
paradigms for dealing with imprecise data: approxi-
mate string matching and fuzzy logic.

A standard measure for approximate string match-
ing is provided by edit distance [9], also known as the
“k-differences problem” in the literature. In general,
the following three operations are permitted: (1) delete
a character, (2) insert a character, (3) substitute one
character for another. Each of these is assigned a cost,
Cdel, Cins, and cgyp, and the edit distance 1s defined as
the minimum cost of any sequence of basic operations
that transforms one string into the other.

This optimization problem can be solved using a
well-known dynamic programming algorithm [15, 25].
Let T = t1t5.. .1, be the term, D = dyds .. .d,, be the
document, and define dist; ; to be the distance between
the first ¢ characters of 7" and the first j characters of
D. The initial conditions are:

distoyo = 0
distiyo = disti_lyo + Cdel(ti) 1<i1<m (4)
distoyj = distoyj_l + Cms(dj) 1

and the main dynamic programming recurrence is:

disti_lyj + Cdel(ti)
distiyj = min distiyj_l + Cins(dj) (5)
dZ’Sti_L]’_l + csub(tiadj)

for 1 <i:<m, 1 <j <n. When Equation 5 1s used
as the inner-loop step in an implementation, the time
required is O(mn), where m and n are the lengths of
the two strings.

This common formulation requires the two strings
to be aligned in their entirety. The variation we use is
modified so that a term, which is relatively short, can
be matched against a much longer document to locate
regions of high similarity (this application is sometimes
called “word spotting”). The initial edit distance is
made 0 along the entire length of the document (al-
lowing a match to start anywhere), and the final row
of the edit distance table is searched for its smallest
value (allowing a match to end anywhere). The initial
conditions become:

distoyo = 0
distiyo = disti_lyo + Cdel(ti) 1<i<m (6)
distg; = 0 1<j57<n

The inner-loop recurrence (i.e., Equation 5) remains
the same.

Figure 1 shows the results of this computation for a
simple example where we have assumed that the costs
are constant, cge.; = Cins = Csup = 1. An exact match
for the term “shell” appears in the document, as indi-
cated. This corresponds to the smallest value in the
final row, 0. Also note that another, very similar sub-
string is found at the same time (“sell”).

While it 1s fairly common for implementations of
Equation 5 to employ constant editing costs, the gen-
eral way in which the algorithm is formulated is much
more powerful than this. In the event that we know
the distribution of the OCR errors a priori (e.g., via a
confusion matrix), we can take advantage of this fact
by setting the editing costs to be inversely proportional
to the frequencies of the error patterns in question. So,
for example, if the substitution e — ¢ is ten times as
likely to occur as the substitution M — W, its cost is
made one tenth as much.

Whatever the policy regarding costs, we define
E(T, D, i) to be the edit distance at index ¢ in the final
row of a table built in this fashion. Then &(T, D) =
min(E(T, D,i) | 0 < ¢ < n) corresponds to the best
match(es). Under the constant cost assignment given
previously, the maximum possible value in this row is
m, which represents deleting all of the characters in
the query term. Hence, (T, D) can fall anywhere in
the range [0,m]. We obtain a membership function
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Figure 1. An example of edit distance “word spotting.”

with range [0, 1] for this model through the use of an
exponential decay:

1
(T, D)/(m—£(T,D))

MPB(T, D) = (7)
where « is a constant to be determined.

Table 2 shows membership values for terms of var-
ious lengths and edit distances, assuming o = 1. If a
term appears exactly in the document, the value re-
turned is 1.0. If none of the characters in the term
appear anywhere in the document, the value returned
is 0.0. These boundary conditions correspond nicely
with the traditional model presented earlier.

Query Term Length (m)
E(T, D) 2 3 4 5 6 7
0 1.00 1.00 1.00 1.00 1.00 1.00
1 0.37 0.61 0.72 0.78 0.82 0.85
2 0.00 0.14 0.37 0.51 0.61 0.67
3 0.00 0.05 0.22 0.37 0.47
4 0.00 0.02 0.14 0.26
5 0.00 0.01 0.08
6 0.00 0.00
7 0.00

Table 2. Membership values for approximate
matchings of terms of various lengths.

For the Boolean operations, we use definitions from
fuzzy set theory [30]:

ffﬁD (l‘, y) = min(x, y)
Foh(z,y) = max(z,y) (8)
fﬁ?T(@ = 1l-z

Hence, if the document were “President Bill Clinton
and Vice President Al Gore met briefly today,” then
evaluation of the query (Clinton AND Gore) would

proceed as follows:

QFB(D)
FEB (MTB(Clinton, D), MFE(Gore, D))
FEB(0.85,1.00) = min(0.85,1.00) = 0.85

The Unix agrep utility can be viewed as implement-
ing a restricted form of fuzzy Boolean retrieval [28].
It differs from the model we have presented here in at
least two significant ways:

1. Queries can contain AND operators or OR oper-
ators, but not both. There is no NOT operator.

The user must specify the maximum number of
editing operations in advance (the default is 0,
i.e., exact matching). The hits are returned in
“scan” order (as with standard grep), not ranked
by “goodness.”

Like grep however, agrep can match regular expres-
sions, a fundamentally different class of patterns than
the Boolean queries we are considering.

3.3. Proximity retrieval

Proximity has proven to be another useful concept in
information retrieval. As an example, one such query
might be “Find all documents where the words ‘Clin-
ton” and ‘Gore’ appear in the same sentence.” The pre-
cise meaning of “proximity” could, in fact, be defined
relative to any logical structure derivable from a docu-
ment (characters, lines, paragraphs, columns, etc.).

From a notational standpoint, we write a proximity
query as [Clinton | Gore], while a more complex query
might be ([Clinton | Gore] OR U.S. leaders). That is,
a proximity term replaces a simple term in the tradi-
tional model. This query also illustrates how proximity
might better capture a user’s intentions: “Clinton” and



“Gore” in the same sentence is conceptually closer to
“U.S. leaders” than “Clinton” and “Gore” in two un-
related sentences far apart in the document.

In effect, proximity is a new form of membership
function that takes term-term-document triples and
maps them onto a set of values in the interval [0, 1].
Rather than treat this as an entirely new query model,
we carry over the membership function MP and op-
erations F¥yp,, FEr, and FE,; from the standard
Boolean case. To this we add a new membership func-
tion MP¥ for use in evaluating proximity terms.

We begin by breaking the document D into consec-
utive, non-overlapping substrings, D = D1 D> ... Dy,
where the partitions are determined by the meaning
of “proximity.” For example, if the proximity is “in
the same sentence,” then the document i1s broken at
sentence-ending punctuation (periods, question marks,
and exclamation points). Then M¥F (T}, Ty, D) is de-
fined as:

ME(Ty, Ty, D) = (9)
1 37 such that
}-END(MB(TMDi)’MB(T2’Di)) =1

0 otherwise

Evaluation of a query incorporating proximity terms
then proceeds exactly as before. Other forms of prox-
imity are possible, and are handled in a similar way.

3.4. Fuzzy proximity retrieval

The preceding definition of proximity clearly breaks
down when the logical structure of the document is not
maintained. It is not uncommon for an OCR system to
miss line breaks and column and table boundaries, and
to delete and insert spaces and punctuation marks (es-
pecially periods) throughout the text. All of these error
effects can have a large impact on proximity queries.

To incorporate a degree of fuzziness in this case, we
allow for the fact that OCR, and document analysis er-
rors may have added “noise” to the logical partitioning
of the document. (We also continue to allow fuzziness
in the basic term membership function as well.) For
example, it is possible that the pairing MB (T, D;)
and MITB(Ty, D;), where i # j, may be used to satisfy
the query. We define the membership function as:

M (T, Ty, D) = (10)

12?§k {72',]'716 }-}ZJED (MFB(Tl’ Di)’ MFB(T2’ D]))}
where v; ;1 = 1/eﬁ|i_j|/(k_1_|i_j|) and 3 1s a constant
to be determined. This computes the best pairing of in-
dividual “hits,” weighted by an exponentially decreas-
ing function of the distance between them.

4. Criteria for performance evaluation

The most straightforward measure of success is
whether or not a retrieval model returns the appro-
priate document(s). This is the metric we use here.
Another, somewhat different approach would be to
consider the actual value assigned to each document,
Q(D), and perform an analysis of the resulting rank
order statistics; see [11] for a study of this kind.

It seems inevitable that any retrieval algorithm will
miss some documents that truly satisfy the query, and
report false “hits” for other documents that do not.
The following two criteria are traditionally used to
quantify these notions [19]:

Recall The percentage of true hits that
are reported.
Precision  The percentage of reported hits

that are in fact true.

It is desirable to have both of these values as close to
1 as possible. There is, however, a well-known trade-
off between the two. By insisting on an exact match,
the precision can be made 1, but the recall will un-
doubtedly suffer. On the other hand, if we allow arbi-
trary amounts of “fuzziness” (and hence return more
and more documents), the recall will approach 1, but
the precision will fall to 0. For a given database to
be searchable, there must exist a point on this trade-
off curve where both the recall and the precision are
sufficiently high.

Before we define recall and precision in terms of our
previous notation, we note that for the fuzzy models, Q
returns a value in the interval [0, 1]. Hence, we must be
more specific when we speak of a “hit” in these cases.
This real value is converted into a 1 (hit) or 0 (miss)
based on a pre-determined threshold 7:

Q*(D):{ 1 QD) >r (11)

0 otherwise
The actual value 7 can be varied, of course. For the
remainder of this paper, we will continue to use the
notation Q knowing that we really mean Q* for the
fuzzy models.

Let A = {Diy,Ds,...,D,} be the database
of original (“clean”) documents, and AN =
{DN. DY ..., DY} be a database of “noisy” docu-

ments. For a given query Q, the set of all “true” hits
is:

7(Q,A)={Die A| Q(Di) =1} (12)
On the other hand, the set of reported hits that are
true is:
RT(Q,A,AN) = (13)
(DX € AY | Q(DX) = 1and Q(D)) = 1)



while the set of reported hits that are false 1s:

RE(Q, A AN = (14)
{DY € AN | Q(D) =1 and Q(D;) = 0}

Then we can define recall as:

[RT(Q, A, AY)]
Recall(Q, A, ANy = 22— — 71 15
( ) (0.0 (15)
and precision as:
Precision(Q, A, AY) = (16)
[RT(Q, A, AY)]

[RT(Q, A, AN)[ 4+ [RF(Q, A, AN

For both of these measures to be 1, the algorithm
must report all of the true hits, and only the true hits.
The recall (precision) for a collection of queries is com-
puted by averaging the individual recall (precision) val-
ues.

To facilitate comparison of the final results, we de-
fine “true hit” relative to the sharp models. Note, how-
ever, that this may unfairly penalize the fuzzy algo-
rithms by a small amount. For example, if the query
term 1s “company”, then the traditional methods will
not return a document containing only the term “com-
panies”, whereas the fuzzy methods might.

5. Experimental results
5.1. Design of the experiment

In order to study the behavior of the retrieval models
just presented, we performed a large-scale experiment
involving a total of 59.6 million query evaluations and
a database of 1,000 news articles gathered from the
Internet.

To simulate the output of an OCR process, we coded
in C two different Unix “filters” for generating errors.
Using synthetic (as opposed to real) OCR data has
several advantages: it allows us a fine degree of con-
trol over the damage, and it makes it easier to run the
retrieval algorithms on a much wider range of inputs.
The simpler of the models we developed injects inde-
pendent, identically distributed (i.i.d.) random single-
character deletion, insertion, and substitution errors.
The other model uses a confusion matrix derived from
analyzing a large body of OCR output to generate error
patterns that are more “realistic-looking.”

For a given noise level p, the 1.1.d. procedure sequen-
tially scans a document 1) and for each character ¢ de-
cides, with probability p, whether ¢ is to be altered.
If an error is determined to have occurred, the filter

then randomly decides whether ¢ is to be deleted or
substituted for, or another character is to be inserted
just prior to ¢. The probabilities for these three cases
are all equal. For substitution and insertion errors, an-
other uniformly random event selects a character s € X
which replaces ¢ or is inserted before it, respectively.

In the case of this simple model, the noise level p
is roughly equivalent to an OCR error rate computed
“after-the-fact” [4]. In Figure 2, we show examples of
the output of the 1.1.d. filter for levels ranging from
“clean” (no errors) to a 40% error rate. For the ex-
periment 1itself, we varied the p parameter from 0.00 to
0.40 in steps of size 0.02.
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Figure 2. Examples of i.i.d. random noise.

The artificial nature of this noise is easy to identify
on sight. Another possible approach is to use a con-
fusion matrix to generate error patterns that at least
exhibit a proper distribution. In this case, we based
our model on OCR results for a long text, the novel
Moby-Dick. The complete work totals 1,179,194 char-
acters and, when typeset in 10-point Times, requires
322 pages. Because we were scrupulously careful when
OCR’ing the clean, first-generation laserprinted copy,
the overall accuracy rate was quite high: 99.4%. In
other words, the baseline noise level was 0.6%.

The five least- and most-frequently encountered er-
rors are listed in Table 3. Error patterns that did not
arise were still assigned a nominal rate of 1 x 107°.
Since this data only provides one “snapshot” of OCR
performance, we applied a linear scale factor to the con-
fusion matrix to obtain other noise levels. (In general,
OCR errors do not scale linearly — this simplification
was necessary to generate the large amount of data
we needed in a reasonable amount of time.) Figure 3
shows examples of the output from the confusion ma-



Least-Frequent Most-Frequent
Error | Rate Error | Rate
insert ) | 0.0001% || 1 — 1 | 4.6875%
insert , | 0.0001% || 6 — ~ | 4.5455%
insert — | 0.0001% || delete — | 1.2978%
insert > | 0.0001% || 0 — 0 | 1.1236%
insert ¢ | 0.0001% || 0 — 0 | 0.9346%

Table 3. Least- and most-frequent OCR errors.

trix filter for levels ranging from “clean” (no errors) to
a 40% error rate.
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Figure 3. Examples of confusion matrix noise.

For our document database, we collected 1,000 news
articles from the Internet. These covered a variety of
subjects (finance, sports, entertainment, etc.). Table 4
gives some simple statistics for the database.

| Quantity || Words | Bytes |
Average document 472 2,999
Shortest document 65 364
Longest document 1,400 8,626
Total database 471,998 | 2,999,137

Table 4. Document database statistics.

Queries were synthesized using an automated pro-
cedure. For the Boolean models, a basic template was
chosen randomly for each of a fixed percentage of the
documents in the database (e.g., (term; AND terms)).
The open terms were then filled-in using words from the
document (or, in the case of NOT’s, from words present
elsewhere in the database but not in the document).
We then evaluated the candidate query against the

“clean” database under the standard Boolean model,
keeping it only if the number of hits fell within a cer-
tain range (generally between 1 and 8). A similar pro-
cedure was used for the proximity models, except there
was only one possible template, [term; | terms]. In this
way, the queries in our test set were guaranteed to be
“well-behaved,” if perhaps somewhat contrived.

In all, we generated 346 queries for the Boolean
tests, and 127 for the proximity. Some examples of the
former are: (Solzhenitsyn), (theater AND reviews),
and (Baily OR Marcia), while examples of the latter
include: [expectations | earnings], [layoff | workers],
and [words | language]. There were also many
artificial-sounding queries, as might be expected (e.g.,
((NOT East-West OR trades) AND Nasdaq)).  The
average number of documents returned for a Boolean
query was 5.9, while for a proximity query it was 4.8.

The complete experiment then consisted of running,
for each of the four retrieval models, the appropri-
ate queries against the 1,000 documents at 21 dif-
ferent noise levels under three different sets of noise
model/edit cost conditions. For the Boolean models,
this yielded 2x346x1,000x21x 3 = 43,596, 000 query-
to-document evaluations. For the proximity models,
the number was 2 x 127 x 1,000 x 21 x 3 = 16,002, 000.
Hence, the experiment involved 59, 598, 000 evaluations
in total.

For each query, we computed the recall and preci-
sion. We averaged the results for a particular noise
level to obtain graphs of the performance degradation
as the OCR damage increased.

5.2. Evaluation

The first two charts, Figures 4 and 5, show the av-
erage recall and precision calculated for the sharp and
fuzzy Boolean retrieval models for the 1.1.d. noise model
and two different values of the threshold 7. Here we
have assumed that the string edit distance costs are
constant, cge; = ¢ins = Csup = 1. When 7 = 0.2, the
fuzzy version exhibits an impressive degree of robust-
ness in terms of recall. By the time the noise level
approaches 0.12, the traditional retrieval model is re-
turning fewer than 50% of the true hits, while the fuzzy
algorithm captures 95%. For documents that have suf-
fered severe damage (noise levels of 0.36 or greater),
the traditional approach misses over 90% of the hits,
whereas the fuzzy method still returns over half.

With regards to precision, the fuzzy model is un-
derstandably less selective: only about 30% of the hits
it returns are “true.” Still, it is generally preferable
to return a little too much data than to miss some-
thing important. It is also interesting to note that the
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Figure 5. Results for Boolean retrieval under
i.i.d. random noise (7 = 0.6).

precision for the sharp model fluctuates, occasionally
dropping to near 95%. These cases correspond to doc-
uments becoming false hits as a result of the injected
noise.

As the threshold 7 is increased, the behavior of the
fuzzy Boolean retrieval algorithm approaches that of
the original. At 7 = 0.4 (not shown), it still has an
advantage in terms of recall, along with an increase in
precision in comparison to 7 = 0.2, but by = = 0.6
(Figure 5) the two methods are less distinguishable.

We present a similar set of recall and precision
curves for the two proximity retrieval models in Fig-
ure 6. While the fuzzy version has higher recall at
7 = 0.2, the improvement is less dramatic. Note that
precision increases with the noise level as fewer and
fewer documents satisfy the queries. Interaction be-
tween the two constants to be set in this case, a and

4, may explain this behavior. A more careful “tuning”
of these values would probably yield better results.
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Figure 6. Results for proximity retrieval under

i.i.d. random noise (7 = 0.2).

Curves for the confusion matrix noise
sented in Figures 7 and 8. These two sets

model are pre-
of results bear

a close resemblance to their i.i.d. counterparts (Fig-

ures 4 and 6, respectively).

This suggests that the

choice of a noise model may be less important than

other effects (e.g., the precise degree of

damage). The

fact that the confusion matrix curves are noticeably

“smoother” is almost certainly a sampling anomaly:

while every error still has some probability of occur-
ring, the distribution is highly asymmetric so there are

effectively fewer error types in this case.
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Figure 7. Results for Boolean retrieval under

confusion matrix noise (7 = 0.2).

Lastly, we present results in Figures 9 and 10 for
when the same confusion matrix is used to generate
the noise and determine the string editing costs. This
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Figure 8. Results for proximity retrieval under
confusion matrix noise (7 = 0.2).

scenario corresponds to having an accurate model for
the OCR noise process. Because this produces a sig-
nificant change in £(7, D) and hence the membership
function M, we have chosen to use a different thresh-
old (7 = 0.8) for the Boolean case. The curves here
are quite dissimilar. Note in particular that recall re-
mains almost constant for the fuzzy Boolean model
across the full range of noise levels, from 0% to 40%.
Whether this phenomenon would arise in practice is
unclear, but is likely to depend on the accuracy of the
edit distance computation in “inverting” the effects of
the noise source.

Results for the proximity models resemble the pre-
vious sets of curves. Evidently the predominate effect
in these tests is not the values returned by the term
membership function, but the way in which they are
combined using Equations 9 and 10.
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Figure 9. Results for Boolean retrieval under
confusion matrix noise and edit costs (7 = 0.8).
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Figure 10. Results for proximity retrieval under
confusion matrix noise and edit costs (7 = 0.2).

6. Conclusions and future research

In this paper, we have examined the effects of sim-
ulated OCR errors on Boolean query models for in-
formation retrieval. While the “sharp” methods are
sensitive to such noise, new versions based on approxi-
mate string matching and fuzzy logic seem to be more
robust.

Although the fuzzy algorithms we presented are
promising, much work remains to be done in the area
of efficiency. There exist well-known data structures
and algorithms for indexing documents and searching
them quickly [6]. Most of these are lexicon-based (i.e.,
the terms are pre-defined). For the fuzzy models we
have described, the existence of such lexicons seems to
be an open problem.

We note here briefly that Aref and Barbara dis-
cuss a heuristic approach based on a trie data struc-
ture that seems to work well for a similar problem in-
volving electronic ink (handwriting) [1]. Also, Myers
gives a sub-linear time algorithm for the special case
where the number of errors 1s bounded in advance by
a constant [13]. TFor the string matching portion of
the computation, it 1s possible to use a parallel VLSI
architecture to speed the search [10].

Another interesting question is whether it is possible
to estimate automatically the noise level of a particular
document. If this were the case, we could use such in-
formation to adapt the weights o and 5 dynamically in
the fuzzy matching algorithms. This would undoubt-
edly lead to better recall/precision performance.

We also note that existing studies of OCR noise
and its impact on information retrieval (including our
own) have examined only one class of errors that might



arise: character-oriented. Other types of DIA errors
are clearly relevant, including the merging of columns,
failure to detect table cell boundaries, large-scale dele-
tions of text and insertions of “gibberish” (i.e., burst
errors), ete. Similar recognition mistakes are likely to
arise even in the analysis of purely electronic docu-
ments. From the standpoint of information retrieval,
such effects warrant further study.

Finally, we note that most popular general-purpose
World Wide Web search engines do not currently sup-
port fuzzy matching [3, 5, 7, 12, 16, 26, 29]. In each
case, the query “Panasonic” turned up many hits, while
the query “Panasoanic” failed to find any. It seems
likely that this application area could benefit from the
inclusion of fuzzy retrieval methods.
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