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Abstract

The bitmap obtained by scanning a printed pattern depends on the exact location of the scanning grid relative
to the pattern. We consider ideal sampling with a regular lattice of delta functions. The displacement of
the lattice relative to the pattern is random and obeys a uniform probability density function defined over
a unit cell of the lattice. Random-phase sampling affects the edge-pixels of sampled patterns. The resulting
number of distinct bitmaps and their relative frequencies can be predicted from a mapping of the original
pattern boundary to the unit cell (called a modulo-grid diagram). The theory is supported by both simulated
and experimental results. The modulo-grid diagram may be useful in helping to understand the effects of

edge-pixel variation on Optical Character Recognition.

1 Introduction

Digitization is the process of spatial, intensity, and temporal quantization of an analog pattern.
Here, we study only the spatial quantization aspect of digitization, and predict the variability of
pixel configurations under uniform random-phase sampling of printed patterns. This variability
is the result of the uncontrollable displacement of the sampling grid relative to the page. Unlike
other types of noise in scanners, random phase noise is an intrinsic consequence of finite sampling
resolution. In OCR (Optical Character Recognition), where the smallest patterns (periods, commas,
quotation-marks) are typically represented by only a few pixels at common point-sizes (8-10 pts)
and sampling resolutions (200-400 dpi), random-phase noise may be the limiting factor in the
recognition of high-quality print. Even in larger patterns, thin strokes, such as the top serif of the

numeral “1” or the horizontal bar of a Times-Roman “e”, may be adversely affected.
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Figure 1: The modulo-grid diagram for a disk whose diameter equals 1.2 sampling intervals.
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Figure 2: The four bitmaps that can be obtained by sampling the circular disk shown in Figure 1

and their corresponding occurrence probabilities.

An example of the effect is shown in Figures 1 and 2. The latter presents the different pixel
configurations (bitmaps) obtained by digitizing a black disk (for example, a period) of diameter
equalling 1.2 sampling intervals. The disk gives rise to 4 different digitized configurations. If the
location of the sampling grid is uniformly distributed (as is the case in practice), then the various
patterns occur with the relative frequencies shown in Figure 2.

The type of information shown in Figure 2 bears on the following OCR problems:

1. Minimum sample size for adequate representation of a set of patterns.

2. Minimum sampling resolution for the recognition of a family of patterns, such as a typeface
of given point size.

The design of OCR-features that are less sensitive to edge-noise.

- @

The construction of pseudo-random defect models for OCR.

ot

The reconstruction of the original (analog) pattern from a set of digitized samples.

6. Reducing OCR errors by multiple scans of a page.

We hope that the theory presented here eventually opens up ways of addressing these OCR issues.



Our principal tool for obtaining the information shown in Figure 2 is the modulo-grid diagram
shown in Figure 1. It is obtained from the original pattern by overlaying the pattern boundaries in
each cell of the digitizing grid on the unit cell. In the sequel, we demonstrate that the modulo-grid
diagram decomposes the spatial displacement space into regions of isomorphic digital represen-
tations of a given pattern. Furthermore, the areas of these regions correspond to the relative
frequencies of the digital patterns.

A qualitative discussion of this phenomenon, emphasizing the correlated nature of the resulting
edge-noise in OCR, appeared in [Nag68]. Nadler mentioned the effects of random-phase sampling on
scanned characters in a 1972 survey paper and illustrated it in a recent textbook on Pattern Recog-
nition [NS93]. Ingold estimated the difference expected between different scans of the same pattern
and devised a method of constructing ternary templates that are insensitive to edge noise [Ing89].
Pavlidis investigated conditions under whichc the connectivity and shape of bilevel patterns are
preserved under digitization. To this end, he formulated a “compatibility condition” that restricts
the minimum size and maximum boundary curvature of both foreground and background compo-
nents of the analog pattern as a function of the sampling interval [Pav82]. The spatial sampling
effect is also familiar to digital typographers [Rub88].

Analysis of the effect of sampling in one dimension, and simulation results, highlighting possible
applications to OCR, were presented in [Sar94] and [NSLZ95]. The modulo-grid approach to
spatial sampling was originated by Havelock [Hav89, Hav91l], who was interested in the precision
of localization of terrestrial objects by remote sensing as a function of image resolution, object
shape and signal-to-noise ratio. He defined the concept of a “locale”, which is precisely a union of
regions of the modulo-grid diagram that yield isomorphic bitmaps. Related work on the sub-pixel
localization of edges and circles, and on the design of optimal fiducial marks, was presented by
O’Gorman et al. [0OBBA90, O’G96].

The contribution of the current paper is the formal proof of the correspondence between the
regions of the modulo-grid diagram and the distinct digitizations, and between the area of the
regions and the frequency of the digitized patterns.

The modulo-grid diagram is presented in Section 2. Section 3 presents our main results in the
form of two theorems. Section 4 contains some examples that illustrate possible applications to

OCR, and Section 5 mentions possible generalizations and some unsolved problems.

2 The Modulo-grid Diagram

When a bilevel spatial pattern is sampled with a lattice (or grid) of delta functions, the result
depends on the positioning of the grid relative to the pattern itself. For the sake of simplicity,
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Figure 3: Sampling a black stroke 2.3 sampling-intervals long may yield a bitmap of 3 or 2 black

pixels.
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Figure 4: A 1-D pattern of black strokes, and the corresponding modulo-grid diagram. The bitmap

associated with each region is also shown.

we consider first sampling in one dimension. If we have a uniform 1-D sampling lattice of delta
functions, then a simple black stroke of length equalling 2.3 sampling intervals can digitize to a
bitmap of either 2 or 3 pixels' (Figure 3).

Let us now consider a more complex bilevel 1-D pattern, such as the one shown in Figure 4.
When the grid is slid along the pattern, the bitmap changes only when one of the sampling points
crosses over an edge of the pattern. Sampling a 1-D pattern of black and white strokes could
produce as many distinct bitmaps as the number of edges (four in this case) in the pattern [Sar94].
Further, since the sampling lattice repeats with a period of one sampling interval, it should be
possible to obtain all the possible bitmaps by sliding the grid by no more than a sampling interval.

This relationship between the analog pattern boundary and the digital configuration can be
captured by what we call the modulo-grid diagram. For a 1-D pattern, the modulo-grid diagram
can be constructed in the following manner. Overlay the grid at arbitrary position over the pattern,
and register the pattern in the grid coordinate system. For each edge in the pattern, located at z,
insert a mark in the interval [0,1) at  mod 1.2 The mark at 0.5 in Figure 4, for example, is due
to the edge at 2.5. The marked interval [0, 1) forms the modulo-grid diagram.

To understand how the modulo-grid diagram works, move the grid with respect to its original
location. As the origin of the grid moves in [0,1) every time it crosses over a mark within the
modulo-grid diagram, some sampling point crosses over an edge in the pattern, and vice-versa.

Each interval between adjacent marks in the modulo-grid diagram thus represents a region of

!'We are using the image processing terminology of “bitmap” and “pixel” in anticipation of the transition to two

dimensions.

2z mod 1 is defined as z — lz].



identical pixel configuration. Since the digital representation does not change within a region,
the length of a region is proportional to the frequency of occurrence of the corresponding pixel
configuration. Owing to the periodicity of the lattice, the modulo-grid diagram wraps around and
the two end regions give rise to isomorphic bitmaps.

Extending the concept to two dimensions leads to a unit cell (Figure 5) in place of the unit
interval, and the “marks” are replaced by segments of the pattern boundary. An example of a 2-D
modulo-grid diagram for a circular disk pattern was shown in Figure 1. The diagram is formed
by taking segments of the pattern’s boundary contour that lie in each of the “grid cells” and
retracing these segments at their coordinates, modulo one, with respect to both axes. The regions
are demarcated by the boundary segments.

If we now slide the grid around, with its origin confined to the unit cell of the modulo-grid
diagram, each time the origin crosses over an edge from one region to another, a sampling point
at some location moves in or out of the pattern, and vice versa. Different bitmap configurations,
therefore, correspond to different regions in the modulo-grid diagram. The converse is not neces-
sarily true as shown at the end of Section 3. Thus the modulo-grid diagram yields only an upper
bound on the number of possible bitmap configurations for a given pattern.

In the following section we develop a mathematical platform for discussing the various concepts

presented here, and present two theorems that summarize our contribution.

3 2-D Spatial Sampling Theory

Let S be the set of all subsets of Euclidean space R? that are closed, bounded, and regularized, >
and whose boundary consists of only a finite number of disjoint simple continuous closed curves.
The “regularization” condition excludes sets that contain isolated and dangling lines and points
from & [Man88], so that the formalization is not complicated by abstractions.

We define an analog pattern in R? to be a function f(x), x € R?, which is non-zero on a region
X € Q. X is called the support of f. Usually f(x) represents the intensity or brightness of the
pattern and in most OCR applications, it is a two-valued function. X then just represents the
pattern where f(x) = 1 and R* — X represents the background where f(x) = 0.

Spatial quantization of an analog pattern is a mapping of f(x) from its continuous support X
to a discrete set of ordered pairs {(x, f(x)) : x € a discrete set of points in R*}. In practice, a
sampling grid or lattice is overlaid on R? space and f(x) is measured at the grid intersections. In
the case of black and white (i.e. binary) patterns, however, specifying the set of grid intersections

that lie within the support of the pattern completely defines the spatial quantization. Disregarding

®A regularized set is a set that equals the closure of its interior.



f(x) allows us to separate the spatial quantization effects from amplitude or intensity quantization,
which we do not discuss in this paper (though it is possible to treat non-binary patterns in a similar
framework).
Let u, v be a pair of basis vectors for R%. A sampling grid, G(p), “positioned” at a point p, is
defined as
Gp)={{g:g=Fkiu+kyv+p, ki,ks € 7}

where Z is the set of all integers. Figure 5 shows examples of grid configurations. The grid
positioned at the origin, G(0), from now on is simply denoted as (. Associated with G is a unit

cell, C.
C={c:c=wutwyv, 0<w; <1, 0<wy <1}

The shaded areas in Figure 5 show the unit cells for the corresponding grids.

Figure 5: Examples of sampling grids.

Digitization of X by grid G at position p is then defined as the set
Dp =X ndG(p)

Since any grid, as defined above, can be converted to a square lattice and back by linear transfor-
mations on R%, we restrict our discussion to square grids.
A pattern digitized by a sampling grid at different locations may give rise to isomorphic digital
patterns. For example, patterns (b) and (c¢) in Figure 6 correspond to sets:
{(-0.8, —0.8), (—0.8, 0.2), (0.2, —0.8), (0.2, 0.2)} and
{(=0.5, —0.5), (—=0.5, 0.5), (0.5, —0.5), (0.5, 0.5)}
respectively. However, they are equivalent in terms of pixel configuration.
Let T(D, t) = {d +t:d € D} denote set D translated by t. Two digital patterns D and D’
are isomorphic if 3t € R? such that T(D, t) = D’. The equivalence relation is denoted as D = D'.
Note that digitizations, by definition, carry information regarding the location of the grid-
origin, unlike bitmaps that we obtain from scanners. This makes it necessary to keep in mind the
relationship between bitmaps and digitizations: a bitmap is a translation-invariant representation

of a digitization, and all isomorphic digitizations correspond to the same bitmap.
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Figure 6: Digitizations of a circular disk resulting from different grid positions.

On the other hand, a pattern may be digitized into distinguishable bitmaps by different trans-
lations of the grid. Figure 6 shows three bitmaps resulting from sampling the same analog pattern.
As we have mentioned earlier, our tool in analyzing these variations is the modulo-grid diagram.

We can now define the modulo-grid operation for a point p with respect to a unit cell €', “p mod

C” (Figure 7), as:

pmod €' = (pr — [p1]) u+ (p2— [p2]) v, where p = pru+ pov

It is easily shown that D, = D
cell C.

p mod ¢ So we only need to consider grid locations within the unit

u
Figure 7: Modulo-grid operation in 2-D.

Let X° denote the boundary of a given analog pattern X.* The modulo-grid diagram, introduced
in our earlier discussion, is formally defined as the result of superimposing the boundary X° over
the unit cell C-: Xg ={p:p=xmod C, x € X"}. Such a superimposition creates a planar
map of boundary segments in C', which partitions €' into non-overlapping, open, connected sets m;,
bounded by points in Xg. Fach such set is called a region. We have for i # j, m; N 7; = @, and
C —Um = X2. In Figure 8 X° is a circle, and X2 consists of circular arcs in the unit cell. Here
there are 9 regions ;.

Two points, p and p’ € C, are said to be in the same locale if and only if digitizations by G(p)

and G(p’) yield the same bitmap. Formally, a locale is a maximal set of points A such that

p.P EAS Dp= Dy

*X¥= X — X° where X° is the interior of X.
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Figure 8: Illustration for Lemma 1.

For the disk pattern and the grid shown in Figures 1 and 8, each region enclosed by the curve-
segments in the modulo-grid diagram belongs to a single locale, as Theorem 1 will show.
In the following, we formally prove that each region belongs to a single locale. First, we introduce

a lemma, the notation for which is illustrated in Figure 8.

Lemma 1 Ifp,p’ € m;, then Vx* € G(0), either (x*+ p) and (x* 4+ p') are both elements of X or
are both elements of X = R?> — X.

Proof: Since p,p’ € m; and 7; is a connected open set by definition, there exists a continuous path

L that starts at p and ends at p’ such that L C 7; [Arm83]. Consequently,
INXt=0 (1)

Let us define the curve L* = {x* 4+ x : x € L} for any x* € G(0). L* is a continuous path
connecting (x* 4+ p) and (x* 4 p’). Figure 8 illustrates the proof for a particular value of x*. It
follows that y € L* = (y —x*) € L. We claim that L* N X* = @, i.e., L* does not include
any point on the pattern boundary. Indeed if this were not the case, then there must exist some
y € L*n X°.

But then, (y mod ') = (y — x*) € X} (since y € X°) and (y — x*) € L (since y € L*).
Consequently, (y —x*) € LN Xg. This contradicts Equation 1.

The presence of a continuous curve L* between (x* 4+ p) and (x* 4+ p’), which never cuts the
boundary X°, implies by the Jordan’s Curve Theorem that (x* + p) and (x* + p’) are either both
in X or both in X.

O

Theorem 1 states formally that all grid positions in a region are in the same equivalence class
or locale, as suggested in Section 2. The proof follows the reasoning that in moving from a shift of

p to a shift of p’, none of the points in the digitizing grid ¢ moves in or out of the pattern.



Theorem 1 Vi, p,p’ € 7, = Dp = Dy

Proof: Let x € Dp. This means that x € G(p) and x € X. From x € G(p), we have x = x* + p,
where x* € G(0).

Let x" be defined as (x + p’ — p). Evidently, x’ = (x* + p’) € G(p’). Furthermore, x =
(x*+p) €X = (x*+p’')=x"€ X by the premise of this theorem and Lemma 1. Therefore,

x' € G(p')NX =Dy

Thus we see that x € D, = x' = (x4 p'—p) € Dpr. Lemma 1 can be similarly used to show that
x¢Dp = x'=(x+p' —p) ¢ Dp. Thus T(Dp,p’ — p) = Dp and consequently, Dp = Dpr.
O

In Theorem 2, we show that if all grid positions are equally likely, then the number of distinct,
probable bitmaps induced by a pattern is bounded above by the number of regions in its modulo-

grid diagram.

Theorem 2 If the position p of the sampling grid G(p) is a random variable that is uniformly
distributed in probability over the unit cell C, then the number of different bitmaps induced by a
pattern X € & that can appear with non-zero probability is bounded above by the number of regions

7; in the modulo-grid diagram of X .5

Proof: Since X € S, X® has a Lebesgue measure of zero. Since X° maps onto Xg, the Lebesgue
measure of Xg also equals zero. Under the assumption of uniform distribution, the Lebesgue
measure of a set equals its probability measure. Thus all digitizations Dq such that q € Xg, put
together account for a zero probability of appearance. All probable isomorphic digitization classes
therefore correspond to grid displacements p that lie within the regions.

By Theorem 1 two different bitmaps, being non-isomorphic, cannot belong to the same region

m; and hence the result.

Corollary 1 The relative frequency of each distinct bitmap, under the assumption of uniformly

distributed grid-shifts, is proportional to the area of the corresponding locale.

a

The upper-bound in Theorem 2 is valid only in a probabilistic sense because grid positions
on the boundary of the pattern may actually correspond to new bitmaps. For example, the grid
location shown in Figure 9, which is on the boundary, results in a bitmap which is different from

bitmaps generated at any other grid location.
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Figure 9: The grid location at a boundary point produces a new pattern.
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Figure 10: An analog pattern on a grid, and its modulo-grid diagram showing the regions that

yield the same bitmap.

Theorem 2 proves that the number of regions is an upper bound for the number of locales and,
therefore, the number of bitmaps, for a given analog pattern. Since the modulo process is periodic
in nature, the unit cell can be wrapped around. Topologically, the modulo-grid diagram forms a
pattern on a torus: the top and bottom sides, the left and right sides, as well as the four corners
respectively are equivalent. This is evident in Figure 10, where the bitmap corresponding to each
region is printed on the modulo-grid diagram. For a given pattern, different positions of the grid
yield different modulo-grid diagrams. These are however topologically identical when treated as a
torus.

We can get a tighter upper-bound by counting as one, the regions that merge together on

®Our assumptions regarding the nature of a pattern are more stringent than is required for the proof of Theorem 2.
In fact, it is sufficient if the pattern has a boundary contour of Hausdorff dimension less than 2 [Fal90].
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Figure 11: The number of different bitmaps that an analog pattern (circular disk in this case) can
yield on sampling plotted against the radius of the disk. The numbers were obtained by computer
simulation. Since the pattern size here is relative to the sampling interval, this also reflects on the

rise in the number of possible bitmaps from the same analog pattern as the sampling rate increases.

wrapping around. However, even regions that are not contiguous on the torus can belong to the
same locale, as noted by Havelock and illustrated by the example in Figure 10. In this example,
the two regions corresponding to the bitmap of a single black pixel are not contiguous on the torus.
On the other hand, the tighter upper-bound may be reached (as in the case of the disk in Figure 8).
Figure 11 shows how the tighter bound increases with increasing size of a pattern, relative to the
sampling interval. The dips in the number of locales correspond to the degenerate cases where the
disk diameter equals the distance between any two grid points. Degenerate cases are not difficult
to construct. A rectangular pattern with sides parallel to the grid axes can yield at the most 4

bitmaps on scanning regardless of its size.

Summary of theoretical results: Given an analog pattern and a sampling grid, the modulo-
grid diagram reveals information regarding both the number of different bitmaps and their frequen-
cies when the pattern is digitized. FEach region of the diagram corresponds to a specific bitmap
(Theorem 1), and its area is proportional to the probability of occurrence of that bitmap (Corol-

lary 1 of Theorem 2) under random-phase sampling.

4 Experimental Verification

The correlated nature of edge noise in scanned character bitmaps was observed and reported by

Nagy as far back as 1968 [Nag68]. Zhou and Lopresti observed that simply scanning a document

11
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Figure 12: A mixture of scanned and simulated bitmaps of Computer Modern Sans Serif e. It is

difficult to tell them apart.

€
€

page thrice with the same scanner and taking a vote among OCR results reduced recognition errors
by 30% [Z1.94]. Since other scanning parameters were the same, this pointed to variable alignment
of the page with respect to the scanner grid as a major factor in OCR performance.

The random phase sampling effect should be considered in the design of pseudo random defect
models [Sar94]. Figure 12 presents a mixture of scanned and simulated bitmaps of e’s. The
simulation procedure consisted of random phase sampling of an ideal character (as given by the
high-resolution outline font of the character), coupled with a very small amount of additive noise®.
The simulated and scanned bitmaps are difficult to tell apart, which would not be the case with
some of the pseudo-random defect models reported in the literature.

We present two experiments which give more convincing demonstrations of this effect in scanned

characters. In each experiment four sets of 1000 bitmaps of e were used. The four sets of data were

obtained by:
1. simulated sampling of an ideal e with independent additive noise effect only

2. simulated sampling of an ideal e with the effect of random grid shifts only

wo

simulated sampling combining the above two effects
4. actual scanning (using a flat bed scanner) of printed e’s.

In the first experiment (Figure 13), the distribution of a simple feature (viz. the number of
black pixels in the bitmap) was computed for each set of data, and the results compared against
each other. While the distribution for the first set of bitmaps is nearly gaussian, owing to the
(unwarranted) independence assumption, the methods incorporating the random-phase effect can

capture the bimodal nature of the distribution seen in real scanned samples (data set 4).

5Scanners convolve the analog image signal with a point-spread function, and the resulting “smoothed” sig-
nal is sampled and compared against a preset threshold level for binary quantization. Additive noise refers to an

independently-distributed additive noise in the analog signal.

12
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Figure 13: The distribution of area (the number of black pixels) in a set of 1000 bitmaps of 12-point
Computer Modern Sans Serif e. The position of a vertical bar indicates the value of the area, while
its height is proportional to the number of bitmaps with that area. Only the random phase-shift

model captures the bimodal nature of the distribution shown by the real scanned sample set.

In the second experiment, we computed boundary chain codes for each set of data. We matched
each chain code with that of a canonical reference character and plotted the distribution profile
of string edits along the chain. Figure 14 presents the results. As expected, independent additive
noise alone results in a uniform error distribution profile. But the model using random grid shifts
shows peak error locations that match up well with real scanned characters. This result emphasizes
the correlated nature of edge-pixel noise that results from random grid translations.

Since variable phase alignment between pattern and grid affects only the edge pixels, the ef-
fects of bitmap variability may be less important for higher sampling rates or, equivalently, bigger
type-sizes. However, the experiments show that the effect is prevalent in bitmap samples of stan-
dard type-sizes and sampling resolutions, and demonstrate that random-phase sampling noise can
account for much of the variation observed in scanned character bitmaps.

Though our motivation has been the analysis of bilevel scanning, random-phase noise does not
pertain exclusively to either bitmaps or optical scanning. A new area in which the issue of spatial
sampling variation may play a prominent role is the processing of text embedded in in-line images
in World Wide Web documents (Figure 15). Text images embedded in a Web page are often
generated through a drawing software (e.g., Adobe Photoshop), by quantizing an abstract, high-
level description of an image (e.g., PostScript description) with respect to the origin of the drawing
window, at a given resolution (typically 72 dpi). The exact same character in the same font can
be quantized differently depending on where it is placed in the image. Figure 15(c) shows different

ways a letter “e” is quantized by Adobe Photoshop. Because of the low sampling resolution (72

13
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Figure 14: The random phase-shift model shows a strong correlation with the actual scanning
process in terms of the location of string edits in chain codes of random bitmap samples of a given

character (12-point Helvetica e), when compared against the chain code of a prototype.
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Figure 15: Spatial sampling variation seen in text images digitized for low resolution displays like

computer screens. The image in (a) was picked off the web. A part of it has been magnified in (b)

to show the pixel configurations. The character samples in (c) were generated by Adobe Photoshop.
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dpi), and because such text is generally free of degradations commonly seen in scanned text such
as optical blur and speckle, spatial sampling variation becomes a major source of noise for the text

image.

5 Conclusion

We have applied the notion of locales to printed characters, established an upper bound on the
number distinct bitmaps that can be generated by displacements of the scanning grid with respect
to an analog pattern under ideal conditions, and computed the frequency of occurrence of each
bitmap under uniformly random grid displacements. These extensions of Havelock’s ideas open
up several interesting areas of investigation. While researchers in remote sensing and computer
vision (such as Bruckstein, Havelock and O’Gorman) are interested primarily in the location of
objects, particularly edges, to sub-pixel accuracy, in OCR the objective is accurate recognition of
the character regardless of its location.

The dependence of the number of distinct bitmaps on the size of the patterns, with additional
allowances made for additive noise, provides a basis for establishing an acceptable sample size for
training OCR classifiers.

Predicting, rather than just counting, all possible bitmap representations of a printed character
as a function of the spatial sampling rate leads to the minimum sampling resolution that guarantees
a given Hamming distance between bitmaps of characters of different classes. A more difficult
problem is determination of the effect of random-phase sampling noise on the types of features
used in OCR. Although OCR system designers have for decades attempted to construct features
that are resistant to edge noise, there is now hope of introducing quantitative considerations into
the design process.

Our work provides a solid foundation for pseudo-random defect models. Such models are en-
joying increasing popularity for generating large sets of identified character bitmaps, but there
has been little success so far in estimating their underlying parameters. Random phase sampling
appears to reproduce accurately the observed variation among scanned characters. Conversely, it
should be possible to reconstruct an analog pattern optimally from a set of digitized samples that
differ primarily with regard to the grid displacement. This might be useful in creating a digital
font from a scanned sample of conventional print in a rare typeface or script (e.g. Tibetan).

Finally, we note that the formal treatment can be extended to multi-level amplitude quantization
(as in gray-scale OCR), and to higher spatial dimensions (3-D voxel models used in range maps and
tomography). We conclude that the correspondence between locales and distinct bitmaps offers a

rich field of study that extends well beyond the applications proposed in earlier papers.
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