CROSS-DOMAIN SEARCHING USING
HANDWRITTEN QUERIES?

D. LOPRESTI, G. WILFONG
Bell Labs, Lucent Technologies Inc.,
600 Mountain Avenue,

Murray Hill, NJ 07974, USA
E-mail: [dpl,gtw]@research.bell-labs.com

In this paper, we show how cross-domain approximate string matching can be
applied to searching a database of scanned typeset documents using handwritten
queries without requiring the correction of recognition errors. We present pre-
liminary experimental results that suggest this approach can significantly improve
retrieval effectiveness.

1 Introduction

As progress continues to be made in on-line and off-line handwriting recog-
nition, an increasing number of applications will allow for the storage and
retrieval of handwritten documents. It also seems likely that the current em-
phasis on forcing the user to correct errors as they arise will be supplanted
by systems that capture writing unobtrusively, performing recognition in the
background for the purposes of later retrieval. This same observation applies
across other media as well: typeset text, voice recordings, images, etc.

A number of researchers have begun examining the problem of retrieval
in the presence of recognition errors. For example, Taghva, et al., observed
that traditional vector-space techniques from the field of information retrieval
are for the most part unaffected by errors due to optical character recognition
(OCR) when the input is relatively clean! Keyword-based searching, however,
1s much more susceptible to noise, especially when the input i1s degraded. One
approach to this problem, based on combining techniques from approximate
string matching and fuzzy logic, is described by Lopresti and Zhou?

This earlier work generally assumes that the query is error-free. Consider
the case, however, where both the query and the documents in the database
may contain recognition errors. This scenario might arise, for example, when
search terms written on the screen of a personal digital assistant (PDA) are
used to query a database of faxes that have been OCR’ed. While it is known
how to apply the error model for a single recognition process to improve re-
trieval, the question of combining models for different processes remains open.

?Presented at the Seventh International Workshop on Frontiers in Handwriting Recognition,
Amsterdam, The Netherlands, September 2000.

1

Recently, we introduced a formalism known as cross-domain approzimate
string matching capable of modeling such scenarios? In this paper, we apply
this paradigm to the problem of searching a database of OCR’ed documents
using handwritten queries, both of which contain uncorrected recognition er-
rors. We present preliminary experimental results that demonstrate how this
approach can increase the effectiveness of retrieval.

2 Cross-Domain Approximate String Matching

Approximate string matching is a widely-studied technique with important ap-
plications ranging from speech recognition to molecular biology* A key prin-
ciple is the concept of string edit distance, a measure for quantifying the sim-
ilarity between two strings as well as for understanding the precise ways in
which related strings may differ. In its most popular formulation, three basic
operations are permitted: the deletion, insertion, and substitution of individ-
ual symbols. Each of these operations is assigned a cost, and the edit distance
between two strings is then defined as the cost of the least expensive sequence
of operations that transforms one string into the other.

As indicated earlier, we are interested in the problem where two strings
to be compared both result from processes that potentially induce errors, but
where the error models are not necessarily the same. For example, in querying
via handwriting a database that was created from scanned documents, we must
contend with on-line handwriting recognition errors as well as a completely
different class of errors arising from OCR, as illustrated in Fig. 1.

This is the cross-domain approximate string matching problem. A formal
model and an algorithm are presented elsewhere;®> here we summarize the most
relevant results. A domain is a means for producing strings of symbols over a
given alphabet. The manner in which strings are produced suggests a means
for judging the similarity between any two strings. In the domain of scanned
pages that have been OCR’ed, symbols with similar shapes may be mistaken
for one another, whereas a handwriting recognizer will likely make a different
set of errors more dependent on confusing pen stroke sequences. The error
model defines the costs for deleting, inserting, or substituting one symbol for
another, e.g., via a confusion matrix. This in turn induces a string-to-string
distance measure within a single domain.

The cross-domain approximate string matching problem is defined by three
domains D;;, 1 < < 3, each with its own, possibly distinct, alphabet X;, cost
function ecost;, and corresponding distance measure edist;. In our case, D is
the domain of OCR’ed documents, D5 is the domain of handwritten queries,
and D3 is a third, unifying domain where strings originating in the first two can

2

Handwriting Recognmon Errors Recognmon Errors Recognition
Recognition

Written Scanned Document
Query Database

Comparison Model

On-line l Handwriting Optical Character l Optical Character

Figure 1: An example of cross-domain retrieval.

be mapped and compared. In the most general specification of the problem,
the mappings between domains (called “transcriptions”) also incur a cost and
induce a distance measure, tdist;. Here, however, we can assume that these
mappings are the identity mapping, with cost zero. The formal statement of
the optimization problem is then:

edist; (A, A") + tdist; 5(A", A") +

xdisty 5 3(A, B) = min edisty(B, B") + tdisty 3(B’,B") +
A'ext, B'ex; edistz (A", B")
A”, B”EE§

(1)

Eq. (1) states that the cross-domain edit distance between two strings A
and B is the optimal way to: (1) edit A into some other string 4’ in domain
D1, (2) map A’ to A” in domain D3, (3) edit B into some other string B’ in
domain D3, (4) map B’ to B” in domain D3, and (5) compare A” and B” in
domain D3. The computation is perhaps more easily visualized by considering
Fig. 2.

3 Algorithm

The optimization problem of Eq. (1) can be solved using dynamic program-
ming. Let A =ajas...an, be astring from X7 and B = b1by ... b, be a string

3

from ¥3.° We wish to determine xdisty 2 3(A, B).

Consider first the case that A and B each correspond to at most a single
symbol in their respective target strings. Then the distance between them
should include the cost of editing A into zero or one symbols A’, the cost of
editing B into zero or one symbols B’ the costs of transcribing A’ into A"
and B’ into B” (assumed to be zero in this application, with A” = A’ and
B" = B'), and finally the edit cost between A” and B”. Thus we define:

edist; (A, A") +
l‘COSt17273(A, B) = min 6di5t2(B, B/) + (2)

A'es ufe}, B'eTou{e} ecostz (A", B")
A”(:AI)7 B”(:BI)EECJ,U{E}

Note the similarity between the formulations of Eqs. (2) and (1).

For any string S = si1s2...5¢, let S;; denote the substring s;s;41...5;.
We can determine xdist; 5 3(A4, B), the cross-domain edit distance between A
and B, by computing xdisty 5 3(A1,4, B ;) recursively:

zdisty 3 3(A1 4, B1j) =

min xdisty 2 3(A1i—x, Bij) +
1<k<i I xeosty o 3(Ai—pt14,6) |’
) min xdisty 2 3(A14, B1j_x) +
i 1<k’ B ?)
<k'<j I xcosty 2 3(e, Bj_piy15)]
min xdi5t172,3(141,z’—ka Bl,j—k’) +
1<k<i, 1K< | xeosty 2 3(Ai—kt1,i, Bj—rrg1,5)

where we define the base case to be zdisty 2 3(g,£) = zeosts 3(¢,¢). The three
minimization terms reflect the costs of deleting, inserting, and substituting
substrings in A, respectively. That is, we test the hypothesis that the left-
hand-sides of the last operation are of length & in A;; and &’ in By ;. The
cost of this hypothesis is the sum of the costs of performing the operation and
the earlier-computed cross-domain edit distance between A; ;_; and By ;_p-.
Then xdisty 5 3(A1;, B1 ;) is the minimum over all such hypotheses.

Following the analysis for the general algorithm? it can be shown that with
O(m?n?|X|?) preprocessing time, we can compute zdist; » 3(A, B) in O(m?n?)
additional time. One possible heuristic for speeding up the computation is to
limit the range of £ and &' in Eq. (3) by a constant. The resulting complex-
ity becomes O(mn|X|?) for preprocessing, with O(mn) time needed to then
compute zdisty 2 3(A, B).

bWe write ¥ to mean a string of length zero or more symbols from X;, and use ¢ to denote
the null string.

Domain D4 Domain D,

String A
I
I 1

String B
]

| String A' Y

Y String B' |

e

Edit (edisty) |

m
=}
=
—
()
=1
[
2
N
)

—9
ég
>
<€
m
=3
_
2
23
Q.
<€
@
5
«Q
@

Domain D3

Figure 2: The cross-domain approximate string matching problem.

4 Experimental Results

To examine the effectiveness of cross-domain approximate string matching, we
designed a simple experiment involving a small database of OCR’ed documents
queried by handwritten search terms. Since this work is still in its early stages,
these results must be considered preliminary. A more comprehensive evalua-
tion is necessary, but is complicated by the substantial effort needed to collect
sufficiently large, independent corpora of OCR’ed documents and handwrit-
ten queries for building confusion matrices and for running tests, and by the
computational complexity of the algorithm.

4.1 Handwriting Recognition System

The handwritten character recognizer used in these experiments is an on-line,
writer-dependent system that requires the user to provide at least one labeled
sample of each character to construct a dictionary® Given an unknown input
character, the recognizer finds the entry in the dictionary that best matches
the input based on a least-squares-type measure that is independent of scale,
rotation, and translation. The recognizer does, however, rely on consistency
in the ordering of pen strokes, and in the writing direction within each stroke.

Fach character in the dictionary is represented by a sequence of (z, y) pairs
corresponding to the motion of the pen tip as the user writes. The represen-
tation also includes information about which data points represent the last

5

point before a pen lift. The sequence of (#,y) pairs is modified from the orig-
inal data to normalize for translational differences. Since a least-squares-type
distance measure is to be used, 1t would seem natural to subtract from each
data point the centroid of the set, since this gives the best match in the least-
squares sense. However, this is not robust because variations in writing speed
could bias the centroid. One obvious solution would be to re-sample uniformly
based on arc length along each stroke of the symbol. Instead, the centroid of
the piecewise-linear curve obtained by interpolating linearly between consecu-
tive data points is used, as this will be invariant under any re-sampling along
such a piecewise-linear curve.

Suppose (a;, b;) for 1 < ¢ < n is the representation of some character «
in the dictionary (as modified for translational differences as indicated above),
and (z;,y;) for 1 < i < n is the representation (normalized for translation) of
some unknown character 8 to be recognized. Let A = (ay,b1,...,an,by) and
X = (21,Y1,--,%n,Yn). Define A® = (=by a1, —bs,as,...,—by,a,), where
A% can be thought of as the symbol « rotated counterclockwise by 7 /2 radians.
A measure of similarity S(«, 3) between o and S that is invariant with respect
to rotation and scaling is defined by [(X - A)? + (X - A®)?]/[(X - X)(A4 - A)]. Tt
can be shown that this measure computes the best correlation between X and
A for any rotation or scaling of X.

Thus, recognition involves computing S(«, #) for each « in the dictionary,
and the entry with the highest score is chosen as the most likely identity of 5.

4.2 FEzperiments

The database consisted of 100 professionally written news articles collected
from Usenet. Each article was truncated to a maximum of 40 text lines, and
the first 10 were typeset in 10-point Courier and printed one-per-page. These
pages were then photocopied on a Xerox 5352C copier with the exposure set to
the lightest possible setting. The copied pages were then scanned on a UMAX
Astra 12008 scanner at a resolution of 300 dpi and OCR’ed using a system
developed by Baird and described in detail elsewhere®

An error classification procedure based on string matching was then run
to build a confusion matrix for the OCR’ed typeset text.” Some of the more
common errors we encountered are listed in Table 1. As indicated in Table 2,
the OCR accuracies for these pages ranged from a low of 74.9% to a high of
91.9%. This data was used to inject synthetic noise into the remaining 90
pages in the test database.”

“This step was used as an expedient until we are able to print, copy, scan, and OCR all of
the pages in question.

Table 1: Some representative OCR errors (10-point Courler, light photocopies).

| Pattern Frequency || Pattern Frequency

6 — & 043 || p—v 0.06
2—7 0.25 || u—v 0.06
E— 8 0.17 r— z 0.04
, — 012 || £ — t 0.03
t —c 0.06 || h—b 0.02

Table 2: Retrieval performance for clean queries (average precision at 100% recall).

Unique Average Precision

OCR Non-Stop Edit Distance
Document | Accuracy Terms Exact | Simp CM
15233 91.9% 86 0.43 0.75 0.81
15234 89.8% 158 0.37 0.63 0.70
15242 88.8% 153 0.36 0.59 0.66
15243 84.2% 191 0.33 0.62 0.66
15256 78.3% 75 0.30 0.58 0.62
15261 82.5% 52 0.21 0.61 0.66
15264 82.0% 67 0.25 0.55 0.65
15265 88.9% 127 0.41 0.65 0.71
15266 86.8% 92 0.40 0.62 0.67
15267 74.9% 119 0.22 0.48 0.57
Average 84.8% 112 0.34 0.61 0.67

A completely different set of 10 pages was similarly typeset in 10-point
Courier, printed, scanned, and OCR’ed. The error analysis in this case was
used to build a confusion matrix for setting the edit costs for string matching.

As an initial test, we ran each unique non-stopword from each of the first
10 database documents (the ones that had been actually OCR’ed) as a query
and measured the average precision at 100% recall for: (1) exact matching
(Exact), (2) simple edit distance with constant costs (Simp), and (3) edit
distance with costs based on the confusion matrix (CM). These results are
reported in Table 2. Clearly, edit distance provides a significant advantage
over exact matching when there is noise in the database. Specializing edit
distance to take into account expected error behavior via a confusion matrix
provides an additional degree of improvement.

For our cross-domain retrieval experiment, each author created a personal
dictionary for the handwritten character classifier described in the previous

7

Table 3: Some representative handwriting recognition errors.

Writer 1 Writer 2
Pattern Frequency Pattern Frequency
Y —y 080 || w— W 0.90
S— s 0.70 R— B 0.80
11— 0.60 z — 2 0.30
L— (0.30 n—u 0.20
+ — X 0.20 a— 9 0.10

section. Pre-segmented handwriting was captured off of a Wacom ArtZ II
digitizing tablet attached to an SGI O2 workstation using inkedit, a graphical
tool we have developed to support such research. We then wrote the alphabet
10 times to gather data to build a confusion matrix. Because the current
system works on isolated characters, there were no deletion or insertion errors,
but the algorithm is powerful enough to handle these and we plan to examine
such cases in the future.? Table 3 lists some common errors for the two writers.

It is important to note the fundamental differences between the two do-
mains (7.e., Tables 1 and 3). Errors such as E — 8 that arise in OCR because
two characters look similar will never occur in handwriting recognition because
the stroke counts are so different (three or four for E vs. one or two for 8). Like-
wise, common errors in the latter such as a — 9 are a function of the way a’s
and 9’s are written, the only distinction being the length of the “tail.”

Next we analyzed the OCR results to identify a set of 10 keyword queries,
one based on each of the first 10 documents in the database (but possibly with
hits to other documents as well). In particular, we chose search terms that
corresponded to non-stopwords that had suffered real OCR, errors. These were
written by the two authors and recognized using the handwritten character
classifier. We then ran our cross-domain approximate string matching algo-
rithm (XD), along with exact matching (Exact) and simple edit distance with
constant costs (Simp) for comparison purposes. The results of this experiment
are presented in Table 4.

As can be seen, cross-domain approximate string matching has the poten-
tial to greatly increase precision, despite considerable damage to the queries.
An example of an optimal alignment (or “trace”) found using this technique
is shown in Fig. 3. This power comes at a cost, however. The time needed to
perform a single keyword-document comparison averages 20 seconds on an SGI
02 workstation with a 200 MHz MIPS R5000 CPU and 64 MB main memory.

4The OCR’ed pages did, of course, exhibit numerous deletion and insertion errors.

8

Table 4: Cross-domain approximate string matching results (precision at 100% recall).

Writer 1 Writer 2
Precision Precision

Query Recognized Exact Simp XD Recognized Exact Simp XD
practices | praCtiCes 0.07 0.11 0.25 || Pr9Cti[es 0.07 0.08 0.25
great gneat 0.09 0.09 0.17 || gredt 0.09 0.11 0.26
1994 1a94 0.25 0.37 0.96 19a4 0.25 0.57 1.00
result reS9lt 0.16 0.16 0.34 || rebult 0.16 0.15 0.20
accused acCused 0.04 0.05 0.14 || a(cuSed 0.04 0.10 0.18
shares shareS 0.22 0.39 0.84 || 9hares 0.22 0.22 0.84
October 0OCtObOr 0.09 0.10 0.20 0CtOber 0.09 0.09 0.16
expense eXpenSe 0.08 0.08 0.18 || eXPenSe 0.08 0.09 0.13
rates rateS 0.10 0.12 0.35 || rateS 0.10 0.12 0.35
fewer feWOr 0.06 0.10 0.14 || feoer 0.06 0.06 0.13

5 Conclusions and Future Research

In this paper, we have described how cross-domain approximate string match-
ing can be applied to searching databases of OCR’ed documents using hand-
written queries without requiring the correction of recognition errors. The
paradigm is a general one, assuming only that error models for the recognition
processes are known and not, for example, that the text is limited to a specific
lexicon or language model. While we presented an experimental evaluation for
one particular scenario, it should be clear that many other interesting combi-
nations are possible (e.g., one writer querying documents written by another).

Still, the results reported here are only preliminary; more work is necessary.
This includes examining much larger datasets, both for the database and for
the queries. Since the accuracy of the error models is a key issue, it would be
interesting to examine the effects of different fonts and document degradations
(e.g., faxing). Tt would also be useful to incorporate character segmentation
into the handwriting recognizer so that it is possible to study the impact of
segmentation errors on the handwritten queries. Finally, techniques must be
found to speed up the computation.

References

1. K. Taghva, J. Borsack, A. Condit, and P. Inaparthy. Effects of OCR
errors on short documents. In Annual Report of UNLV Information
Science Research Institute, pages 99-105, Las Vegas, NV, 1995.

9

oln

fluln|c]t] !

i
[clo[nTt [r[o]l] \\f [ul. \r\i\\C\Z\i \c;\\n\S\. [[T[hTe]

Figure 3: Example of a trace found using cross-domain approximate string matching.

2. D. Lopresti and J. Zhou. Retrieval strategies for noisy text. In Proceed-
wngs of the Fifth Annual Symposium on Document Analysis and Infor-

mation Retrieval, pages 255-269, Las Vegas, NV, Apr. 1996.

3. D. Lopresti and G. Wilfong. Cross-domain approximate string matching.
In Proceedings of the Sizth International Symposium on String Processing

and Information Retrieval pages 120-127, Cancin, Mexico, Sept. 1999.

4. D. Sankoff and J.B. Kruskal, editors. Time Warps, String Edits, and
Macromolecules: The Theory and Practice of Sequence Comparison.

Addison-Wesley, Reading, MA, 1983.

5. G. Wilfong, F. Sinden, and L. Ruedisueli. On-line recognition of hand-
written symbols. IFEE Transactions on Pattern Analysis and Machine

Intelligence, 18(9):935-940, 1996.

6. H.S. Baird. Anatomy of a versatile page reader. Proceedings of the IEEE,

80(7):1059-1065, 1992.

7. J. Esakov, D.P. Lopresti, J.S. Sandberg, and J. Zhou. Issues in automatic
OCR error classification. In Proceedings of the Third Annual Symposium
on Document Analysis and Information Retrieval pages 401-412, Las

Vegas, NV, Apr. 1994.

10

