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Abstract

This paper presents an experimental evaluation of several text-based methods for
detecting duplication in scanned document databases using uncorrected OCR output.
This task is made challenging both by the wide range of degradations printed documents
can suffer; and by conflicting interpretations of what it means to be a “duplicate.” We
report results for four sets of experiments exploring various aspects of the problem
space. While the techniques studied are generally robust in the face of most types of
OCR errors, there are nonetheless important differences which we identify and discuss
in detail.

Keywords: duplicate detection, approzimate string matching, information retrieval, op-
tical character recognition, document analysis.

1 Introduction

An important problem facing large-scale legacy document conversion projects is determining
whether duplicates already exist in the database when a new document arrives for process-
ing. For example, one particular collection activity for the U.S. Government’s Gulf War
Declassification Project accumulated 564,000 pages, the majority of which (292,000 pages)
were later found to be duplicates of documents already on hand [3]. Clearly, techniques for
detecting duplicates could prove extremely valuable, both in terms of cost savings as well
as deepening our understanding of the relationship between documents.

Although this task might seem straightforward at first glance, it becomes quite chal-
lenging when one considers the different possible interpretations of what it means to be a
“duplicate,” and the many types of damage that can be inflicted on a physical medium such
as the printed page. Note also that while there is an obvious connection to the known-item
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searching problem, there are some essential differences between traditional information re-
trieval and duplicate detection. In the latter, queries arise as the result of the automated
process of registering a new document with the collection. Hence, both the query and the
database entries may contain a substantial number of recognition errors. Moreover, absent
an extraordinary event (i.e., detection of a potential duplicate), no human intervention is
assumed. Indeed, the goal is to minimize operator involvement. This places severe demands
on precision in particular (as usual, the importance of high recall varies with the applica-
tion). Performance in cases when no match is present, a “negative” result, can be just as
interesting as returning true hits, although much more difficult to quantify.

In previous papers [9, 10, 12], we introduced a formalism based on approximate string
matching for categorizing duplicates into four classes as illustrated in Figure 1:

Full-layout duplicates are visually identical (e.g., one is a photocopy or fax of the other).

Full-content duplicates have identical textual content, but not necessarily the same lay-
out of text lines (e.g., a Web page printed twice using different margin settings).

Partial-layout duplicates share significant content and have the same layout (e.g., the
copy-and-pasting of whole paragraphs from one document to another).

Partial-content duplicates share significant content but not necessarily the same layout
(e.g., the copy-and-pasting of individual sentences).

In addition, we described a family of algorithms, one for each of the four classes, which
operate on the “raw” (i.e., uncorrected) output of an optical character recognition (OCR)
process. We presented exerimental results showing that these methods were robust in the
presence of real-world noise, and that the models could successfully distinguish the various
types of duplication.

Full-Layout Full-Content The qui ck
The quick brown The quick brown The quick brown brown fox
fox jumps over < — fox jumps over fox jumps over < —- j unps over
the lazy dog. the lazy dog. the lazy dog. the |a
¥ o9 * same content v g el dog * same content dog. i
* same layout « different layout
: Partial-Layout The quick brown : Partial-Content [ [he auick
The quick brown fox jumps over The quick brown junps over
fﬁxljum%sover } ” the lazy dog. fﬁxll”m%s‘)ve‘ } H the | azy
i . t .
ety o8 « shared content el oo « shared content dog.
* same layout « different layout

Figure 1: The four duplicate classes.

There are, of course, a number of other well-known approaches to searching textual
databases. While schemes predicated on finding long strings of perfect similarity will likely
fail when noisy documents are included in the corpus, the traditional vector space metric
from information retrieval, for example, has been found to be relatively immune to OCR



errors [21]. Identifying plagiarism and copyright violations, where some degree of difference
between the documents in question can naturally be expected, is also a related problem [17].
Such methods could be run on OCR output in an attempt to identify duplicates in document
image databases.

The present paper makes use of this work and builds on our previous results in duplicate
detection in several ways. We present an experimental evaluation comparing other text-
based methods to the string matching techniques mentioned earlier. We also examine three
new “hard” scenarios: cases where the queries are severely degraded, the reading order
is incorrectly determined, and the database contains numerous false duplicates. These
highlight the strengths and weaknesses of the different approaches.

The remainder of this paper is organized as follows. In Section 2, we briefly review
related work. The algorithms to be studied are summarized in Section 3. Experimental
results are presented in Section 4. Finally, Section 5 gives our conclusions and discusses
possible future research.

2 Related Work

A number of researchers have begun to examine the problem of detecting duplicates in the
context of document image databases [1, 4, 5, 8, 13, 14, 20]. Still, most previous work on
this subject has concentrated on identifying which features to extract and not so much on
the different ways they might be compared. This step is typically handled using one or
another of the techniques from the literature.

Broadly speaking, these approaches can be classified depending on whether they operate
on low-level image features [4, 5, 13, 14] or on the output of a symbolic recognition process
such as OCR [1, 8, 20]. The former are more general in the sense they can be applied to
non-textual input (e.g., drawings, photographs), but more limiting in that they can only be
used to find full-layout duplicates. Our primary interest lies in techniques from the latter
category.

Spitz, for example, employs character shape codes as features and compares them using
a standard string matching algorithm [20]. In the taxonomy presented in Section 1, this
corresponds to the full-content problem. Doermann, et al., also use shape codes, but extract
n-grams for a specific text line to index into a table of document pointers [1]. Since this
signature is computed from a single line, it does not explicitly measure the similarity of
complete pages. The intention, though, is that this is a method for addressing the full-
layout problem. Hull, et al., describe three techniques: one based on decomposing the page
into a grid and counting connected components within each cell, another using word lengths
as a hash key, and one comparing image features (pass codes arising from fax compression)
under a Hausdorff distance measure [5]. More details on the last method appear in later
paper [4]. The first and third of these fall in the full-layout category, while the second
can be classified as searching for full-content duplicates. In a recent paper, Lee and Hull
describe a method for performing duplicate detection on symbolically compressed images
by solving the text deciphering problem through the use of Hidden Markov Models [8].
They then apply n-gram indexing with term weighting to detect duplicates, addressing the



full-content problem.

Elsewhere, Taghva, et al., observed that traditional vector-space techniques from the
field of information retrieval (IR) are for the most part unaffected by OCR errors when
the input is relatively clean [21]. Kantor and Voorhees’ report on the TREC-5 Confusion
Track presents the results of running 49 queries (“topics”) against three parallel collections
(baseline, 5% OCR error rate, and 20% OCR error rate) derived from the 199/ Federal
Register [6, 7]. Five research groups participated, proposing equally-many different ranking
strategies. Performance was found to suffer noticeably at the highest error rate (precision
in some cases dropped by a factor of 10), and methods occasionally failed to return the
intended document anywhere in the top 1, 000.

Also seemingly related is the general copy detection problem. Shivakumar and Garcia-
Molina have developed efficient methods for searching large online databases for signs of
copyright infringement [17]. A later paper of theirs considers the task of identifying near-
replicas on the World Wide Web (WWW) to improve the performance of Web crawlers,
archivers, and search engines [18]. All of these approaches are text-based, employing char-
acter or word n-grams or longer syntactic entities (sentences, paragraphs, etc.), and must
allow for the fact that two documents need not be identical for the results of their compari-
son to qualify as “interesting.” There are, however, significant differences between a typical
IR query and a complete document, and between the kinds of errors that arise during OCR
and the steps taken to conceal an attempt at plagiarism. One question we seek to answer in
this paper is how well these methods work for detecting duplicates in the presence of large
amounts of “noise” and under the different models described in the Introduction.

3 Algorithms

In this section, we briefly summarize the algorithms under study. The reader is referred to
the original works in question for more details.

3.1 Approximate String Matching Applied to Duplicate Detection

The string measures are based on the well-known concept of edit distance. In the simplest
case, the following three operations are permitted: (1) delete a symbol, (2) insert a symbol,
(3) substitute one symbol for another. Fach of these is assigned a cost, ¢ger, Cins, and cgys,
and the edit distance is defined as the minimum cost of any sequence of basic operations
that transforms one string into the other.

As it relates to full-content duplicates, this optimization problem can be solved using
a dynamic programming algorithm [22]. Let @) = ¢1¢2...q,, be the query document, D =
did;y...d, be the database document, and define distl;; to be the distance between the
first ¢+ symbols of () and the first j symbols of D. The initial conditions are:

di8t1070 =0
distl;o = distl;_10 + caer(q;) I1<i<m,1<j<n (1)
dist]od‘ = di8t107]‘_1 + Cms(d]‘)



and the main dynamic programming recurrence is:

distlioy; 4+ cqealqr)
distl; ; = min distl; ;4 + Cms(dj) I<i<m, 1<j<n (2)
dZ.StJZ'_L]‘_l + Csub(%v d])

The computation builds a matrix of distance values working from the upper left corner
(distlyp) to the lower right (distl,, ).

The other three string algorithms, sdist! for partial-content duplicates, dist2 for full-
layout duplicates, and sdist2 for partial-layout duplicates, reflect various adaptations of this
approach to allow for partial matchings and 2-D document structure [9, 10, 12].

For the partial duplicate problem, what is needed is the best match between any two
substrings of ) and D. Fortunately, the original computation can be modified so that
shorter regions of similarity can be detected in two longer documents with no increase in
time complexity [19]. The edit distance is made 0 along the first row and column of the
matrix, so the initial conditions become:

sdistlyg = sdistl; o = sdistly; = 0 1<i<m,1<j<n (3)

In addition, another term is added to the inner-loop recurrence capping the maximum
distance at any cell to be 0. This has the effect of allowing a match to begin at any position
between the two strings. The recurrence is:

0

sdistli_1; + cae(q;)
Sdistfid‘_l + Cms(dj)
Sdistfi_17]‘_1 + Csub(qivdj)

sdistl; ; = min 1<i<m,1<j5<n (4)

Finally, the resulting distance matrix is searched for its smallest value. This reflects the
end-point of the best substring match. The starting point can be found by tracing back the
sequence of optimal editing decisions.

For the 2-D models (i.e., layout duplicates), another level is added to the optimization.
The problem is still one of editing, but at the higher level the basic entities are now strings
(lines). Say that Q = Q'Q*...Q% and D = D'D?... D!, where each Q' and D’ is itself a
string. For full-layout duplicates, the inner-loop recurrence takes the same general form as
the 1-D case:

dist2,_q; + Cdel(Qi)
dist&"]‘ = min di8t2i7j_1 + Cms(D]) 1<e <k, 1<5< (5)
diStgi—l,j—l + Csub(in D])

where Cyep, Cins, and Clgyp are the costs of deleting, inserting, and substituting whole lines,
respectively. The initial conditions are defined analogously to Equation 1.
Since the basic editing operations now involve full strings, it is natural to define the new

Caat(Q°) dist1(Q', ¢)
dist1(6, D) I<i<h 1<j<lI (6)

Cins(D])
Coun(QF, D7) dist1(Q', D7)

costs as:



where ¢ is the null string. Hence, the 2-D computation is defined in terms of the 1-D
computation.

Lastly, the extension for partial-layout duplicates combines the modifications for the
partial (Equation 4) and layout (Equation 5) problems:

0

sdist2_1;  + Caa(Q°)
sdist2¢7j_1 + Cms(D])
SdZ.StQZ'_L]‘_l + Csub(leD])

Note that Cger, Cins, and Cyy, are defined as before in terms of dist! (i.e., Equation 6).
At this point four different algorithms have been presented, one for each of the models

described in the Introduction. For exact duplicates, the distance returned by any of the

algorithms will either be 0 or a negative number that grows smaller as the lengths of the

sdist?; ; = min 1<i<k 1<5<1 (7)

documents increase. For dissimilar documents, the maximum distance grows larger as the
lengths increase. It is always the case that, for a given query, a smaller distance corresponds
to a better match. In order for the results for different queries to be comparable, however,
it is necessary to normalize the distances.

If the target interval is [0, 1], where 0 represents a perfect match and 1 a complete
mismatch, then the following formula provides an appropriate mapping:

dist — mindist

EDITdist(Q, D) = (8)

where dist is one of the four edit distance measures and mindist and mazdist are, respec-

maxdist — mindist

tively, the minimum and maximum possible distances for the comparison in question.
Assuming a full-duplicate computation, and making certain reasonable assumptions

about the cost functions, the minimum is obtained when all of the characters in the query

match the database document and there are no extra, unmatched characters. If the query

is @ = q1q2 - - - ¢y, then:
m
mindist = Z csub( iy Gi) (9)

=1
Or, more simply, mindist = m - ¢, When the costs are constant and ¢, is the cost of an
exact match.

The maximum distance, on the other hand, is determined by the query and the set
of all strings with the same length as the database document. If the cost functions are
unconstrained, this in itself becomes an optimization problem. Fortunately, for constant
costs there is a simple closed-form solution. Without loss of generality, let the query be
the shorter of the two strings (i.e., m < n). There are two possible “worst-case” scenarios:
either all of the symbols of the query are substituted and the remaining symbols of the
database string are inserted, or all of the query symbols are deleted and the entire database
string is inserted. Thus:

m - Csyb + (n - m) * Cins (10)

maxdist = min
m - Cdel +n- Cins

The partial-duplicate computations are normalized similarly.



3.2 The Vector Space IR Method

The vector space model first proposed by Salton, et al., is extremely popular in the field
of information retrieval [15, 16]. This approach assigns large weights to terms that occur
frequently in a given document but rarely in others because such terms are able to distin-
guish the document in question from the rest of the database. Let if;;, be the frequency of
term { in document D;, ny be the number of documents containing term ¢, T" be the total
number of terms, and N be the size of the database. Then a common weighting scheme
(tf x idf) defines w;i, the weight of term ¢ in document D;, to be:

- tfiy, - log(N /ny)
VET L (t)? - (log(N/nj))?

The summation in the denominator normalizes the length of the vector so that all documents
have an equal chance of being retrieved.

(11)

Given query and document vectors (); = (w1, Wiz, . .., w;r) and D; = (wj1, wjo, ..., wT),
a vector dot product is computed to quantify the similarity between the two:

T
VSdiSt(QZ’, D]‘) = Z Wik W (12)
k=1

3.3 The SCAM Algorithm for Plagiarism Detection

SCAM, the work of Shivakumar and Garcia-Molina, attempts to overcome some of the limi-
tations of the vector space model when the lengths of the documents differ significantly [17].
They define a closeness set for two documents (); and D;, ¢(Q;, D;), to contain those terms
that have a similar number of occurrences in both documents. That is, a term t; is in
c(Q;, D;) if it satisfies the following condition:

tfik tf‘k
6_(%k+5:)>0 (13)

where € = (2%, 00) is a user-settable parameter.
Next, they define an asymmetric measure:

. a2 At -t
8'(1()8615(622'7 D]) — Ztkec(g“ng k j;k2 f]k
Yoh=1 0% - (W)

that reflects the degree to which @; is contained within (i.e., is a partial-content duplicate
of) D;. The similarity between two documents is then computed to be:

(14)

SCAMdist(Q);, D;) = max {subset(Q;, D;), subset(D;,Q;)} (15)



4 Experimental Results

To investigate the performance of the algorithms described in this paper, four sets of experi-
ments were designed. The first studied various real-world noise sources and their effects, the
second examined a common document layout analysis error (decolumnization), the third
looked at the four duplicate models and how they relate, and the last considered the impact
of including multiple false duplicates in the database.

The base test collection consisted of 1,000 professionally written news articles gathered
from Usenet and was used as-is (i.e., no attempt was made to inject OCR errors, either real
or synthetic). The query documents, however, and the intended duplicates were “authentic,”
pages that had been printed, scanned, and OCR’ed.

We analyzed the four string algorithms, the vector space measure using both word
unigram tokens (with stopword removal) and character trigram tokens (without stopword
removal), and SCAM. All of the algorithms were coded in C and run on an SGI 02 work-
station. To make the results directly comparable, the outputs were normalized to the
interval [0, 1], with O corresponding to a perfect match (this entailed subtracting the vector
space results from 1). For the full-duplicate computations, the edit costs were set to be
Cdel = Cins = Csup = 1 and ¢4 = 0. For the partial-duplicate computations, the match cost
was changed to ¢, = —1. In our experiments using SCAM, we set a = 1 and ¢ = 3.

4.1 Experiment 1

The goal of this experiment was to study duplicate detection under a range of realistic
noise conditions. Working from the corpus, 10 documents were randomly chosen to provide
a focus. The minimum document length in this set was 364 characters (65 words), the
maximum was 2,404 characters (379 words), and the average was 1,274 characters (200
words). Seven “batches” of these 10 pages were then created, the first six to be inserted
into the database as the duplicates, and the remaining batch to serve as the queries. For
the duplicates, one set of pages was used as-is (i.e., “clean”) while the others were subjected
to one of five different degradations: faxing, noticeably light or dark or third generation
photocopying, or handwritten markup (annotations) that obscured a random 20% of the
lines on the page. In addition, the original ASCII text for the documents was left in the
database. The query batch was degraded twice: first the pages were photocopied light,
then the light copies were faxed. All of the resulting pages were then scanned and OCR’ed.
Hence, each of 10 queries was run against a database of 1,000 documents containing seven
intended duplicates, six that had been OCR’ed plus one error-free version.

Except for the few lines that had been obliterated by the marker pen, all of the docu-
ments were still easily legible to a human reader. Optical character recognition systems are
not yet as adept, however. Table 1 shows the OCR accuracies for the duplicates, and Table 2
the accuracies for the queries.! Note that the rates range widely, dropping as low as 56.3%
in the former case and 45.1% in the latter. Faxing and annotation were the worst offenders,

!These figures are computed by using string edit distance (e.g., algorithm dist!) to compare the OCR
output to the original ASCII text for the document in question. Provided there have been no higher-level
errors in the document analysis process, this is an accepted way of quantifying OCR accuracy [2].



at least in terms of impairing accuracy, while third generation photocopying displays the
highest variance. The queries clearly show the consequences of having been twice-degraded.
As expected, a large variety of OCR errors were encountered. Beyond this, other complica-
tions arose as well. For example, the standard headers prepended to faxes were transcribed
(albeit with numerous mistakes), and the lines that had been crossed-out were completely
missing from the annotated pages.

Table 1: OCR accuracies for the duplicates used in Experiment 1.

Degradation

Document || Clean | Fax | 3rdGen | Light | Dark | Note Min Max Ave
737 93.9% | 74.9% | 92.1% | 83.0% | 92.6% | 56.3% || 56.3% | 93.9% | 82.1%
8161 95.7% | 83.8% | 84.9% | 84.8% | 95.4% | 73.0% || 73.0% | 95.7% | 86.3%
9837 96.7% | 67.9% | 81.7% | 84.5% | 96.6% | T4.7% || 67.9% | 96.7% | 83.7%
9877 96.2% | 62.0% | 71.0% | 78.8% | 96.1% | 80.0% || 62.0% | 96.2% | 80.7%
15233 96.0% | 88.4% | 70.9% | 85.5% | 95.9% | 76.1% || 70.9% | 96.0% | 85.5%
15317 96.3% | 69.9% | 93.2% | 89.8% | 96.1% | 79.1% || 69.9% | 96.3% | 87.4%
15334 96.3% | 83.6% | 63.4% | 80.7% | 96.1% | 76.3% || 63.4% | 96.3% | 82.7%
16697 96.5% | 65.5% | 83.7% | 86.0% | 96.2% | 83.3% || 65.5% | 96.5% | 85.2%
16884 95.1% | 80.7% | 78.3% | 86.2% | 95.1% | 72.5% || 72.5% | 95.1% | 84.7%
19962 95.3% | 60.7% | 88.3% | 86.9% | 94.9% | 77.2% || 60.7% | 95.3% | 83.9%
Min 93.9% | 60.7% | 63.4% | 78.8% | 92.6% | 56.3% || 56.3% | 93.9%

Max 96.7% | 88.4% | 93.2% | 89.8% | 96.6% | 83.3% || 83.3% | 96.7%

Ave 95.8% | 73.7% | 80.7% | 84.6% | 95.5% | 74.9% 84.2%

Table 2: OCR accuracies for the queries used in Experiment 1.

Document || Light-Fax |

737 58.4%
8161 65.0%
9837 54.2%
9877 63.6%
15233 65.0%
15317 75.7%
15334 77.0%
16697 57.5%
16884 53.7%
19962 45.1%
Min 45.1%
Max 77.0%
Ave 61.5%

We then ran the dist2 approximate string matching algorithm, as well as the vector
space measure using single-word tokens and character trigrams and the SCAM method.
The average precision at 100% recall for each of the 10 queries is given in Table 3. As can
be seen, all of the methods performed quite well; dist2 was perfect, and the other measures



nearly so. This demonstrates that, on the whole, the four techniques are robust when faced
with the sorts of OCR errors seen in practice. The one anomaly, perhaps, is the low score
obtained by SCAM for query 19962. This particular document was relatively short: a
listing of worldwide gold markets and the current prices per ounce at the time. SCAM
ranked similar listings for other days higher than several of the true matches. The issue of
near-duplicates will be examined further in subsection 4.4.

Table 3: Average precision at 100% recall for Experiment 1.

Measure
Vector Space
Document || dist2 | Word Unigram | Char Trigram | SCAM
737 1.000 1.000 1.000 1.000
8161 1.000 1.000 1.000 1.000
9837 1.000 1.000 1.000 1.000
9877 1.000 1.000 1.000 1.000
15233 1.000 0.778 0.778 1.000
15317 1.000 1.000 1.000 1.000
15334 1.000 0.875 0.875 1.000
16697 1.000 1.000 1.000 1.000
16884 1.000 1.000 0.778 1.000
19962 1.000 0.875 0.875 0.538
| Ave || 1.000 | 0.953 | 0.931 | 0.954 |

Figure 2 plots, for the 10 queries, the normalized distances computed by each of the four
approaches for every document in the database. Note that there is usually a clear distinction
between true duplicates and everything else, although this appears more evident in the case
of dist2 than, say, SCAM. This suggests that it may be easier to set a predetermined
threshold for the former.

Qualitatively, certain other interesting effects can be seen in the charts. The various
forms of degradation seem to be handled somewhat differently by the four methods. For
example, dist2 does worse than the others on the annotated duplicates. Recall that ap-
proximately 20% of the content of these documents was completely obscured. The vector
space measures (including SCAM) are tuned to tolerate this kind of scenario. To be fair,
however, the dist2 algorithm is not designed to capture partial matches; sdist2 or sdistl
would be a more appropriate choice here. On the other hand, the faxed, third generation,
and light duplicates look to be more troublesome for the vector space techniques. Many of
the non-duplicates (the hollow circles) that are assigned relatively low distance scores cor-
respond to follow-up postings to the original article used as the query. While sharing some
of the same unique terminology (e.g., proper names), they are by no means true duplicates.

It is perhaps instructive to examine more closely the best and worst cases. Table 4
lists the minimum-distance duplicate for each measure/query combination, and Table 5 the
maximum-distance duplicate. Note that the annotated documents often turn up on the
former list for the vector space methods (especially SCAM), and the latter list for dist2.
It should come as no surprise that the error-free and clean duplicates are generally ranked
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Figure 2: Results for Experiment 1.

near the top. The third generation photocopies provide an obvious challenge across all
of the measures. Upon closer examination, it was determined that the machine used to
generate the database copies introduced significant optical distortion, which no doubt had
an adverse impact on OCR and ultimately the distance values computed during retrieval.

4.2 Experiment 2

A fundamental difference between the string-based models and those derived from the vector
space approach is the dependence of the former on determining a canonical reading order
for the text. (This reading order need not conform to the way a human would interpret the
text, it need only be consistent from one document to the next.) While finding a reading
order is generally not hard for single column documents, it can become challenging for
complex, multicolumn layouts.

The intent of this experiment was to examine duplicate detection when reading order
is a problem. We took query 15233 from the previous experiment and formatted it in
two-column mode, forcing the inter-column spacing to be so tight that the column break
was lost on some, but not all, lines (this is known as “decolumnization”). The page was
photocopied light and then scanned and OCR’ed. In this case it was impossible to compute
a value for the OCR accuracy, but visual inspection suggested it was somewhat higher than
the queries in Experiment 1. Figure 3 gives the results for this test.

11



Table 4: Minimum-distance duplicates for Experiment 1.

Measure

Vector Space
Document dist2 Word Unigram | Char Trigram SCAM
737 Fax (0.354) | Original (0.430) | Fax (0.604) 3rdGen (0.617)
8161 Clean (0.322) Clean (0.334) Clean (0.595) Clean (0.254)
9837 Clean (0.451) | Original (0.461) | Clean (0.666) | Original (0.614)
9877 Dark (0.334) Dark (0.512) Dark (0.676) Note (0.473)
15233 Fax (0.295) Dark (0.331) Clean (0.447) Dark (0.368)
15317 Clean (0.215) | Original (0.262) | Dark (0.489) Note (0.313)
15334 Clean (0.199) | Original (0.218) | Dark (0.331) Note (0.278)
16697 Clean (0.410) | Original (0.449) | Clean (0.613) Fax (0.527)
16884 Fax (0.431) Note (0.589) Fax (0.694) Note (0.667)
19962 Fax (0.418) Note (0.424) Note (0.414) | 3rdGen (0.476)

Table 5: Maximum-distance duplicates for Experiment 1.

Document

dist2

Measure
Vector Space
Word Unigram | Char Trigram

SCAM

737
8161
9837
9877
15233
15317
15334
16697
16884
19962

Note (0.677)
Note (0.490)
Note (0.551)
Fax (0.495)
3rdGen (0.522)
Fax (0.344)
3rdGen (0.471)
3rdGen (0.500)
Note (0.549)
Note (0.604)

Light (0.689)
Light (0.586)
Light (0.602)
3rdGen (0.670)
3rdGen (0.759)
Fax (0.513)
3rdGen (0.592)
3rdGen (0.671)
3rdGen (0.795)
Light (0.594)

Light (0.768)
Light (0.771)
3rdGen (0.756)
3rdGen (0.777)
3rdGen (0.775)
Light (0.626)
3rdGen (0.665)
3rdGen (0.760)
3rdGen (0.846)
Fax (0.442)

Light (0.729)
3rdGen (0.429)
Fax (0.741)
Light (0.609)
3rdGen (0.684)
Fax (0.410)
3rdGen (0.500)
3rdGen (0.631)
Light (0.771)

Fax (0.616)

As expected, the string technique nearly loses its ability to distinguish duplicates from
non-duplicates. This is the penalty paid for not maintaining the same reading order. The
vector space charts, on the other hand, look more like those for the first experiment. Hence,

they are immune to this sort of failure in the document analysis process.

4.3 Experiment 3

The purpose of this experiment was to determine how the different duplicate models and
comparison measures relate empirically (recall Figure 1). The same source document was
used as in the previous experiment. Duplicates were constructed from the query by changing
the line breaks and/or deleting roughly half of the text from the beginning of the document

and appending an equal amount of unrelated text to the end.

The pages were then printed, scanned, and OCR’ed. In this case, the OCR accuracies
were all fairly close, ranging from 94.9% to 96.1%, as indicated in Table 6. As before, the
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Figure 3: Results for Experiment 2 (two-column query with improper reading order).

original source text was left in the database to serve as a second full-layout duplicate of the
query. Thus, there were between two and five duplicates in the database, depending on the
model.

Table 6: OCR accuracies for Experiment 3.

| Document Type || Duplicate | Query |

Full-Layout 96.0% 95.9%
Full-Content 96.1% -
Partial-Layout 94.9% -
Partial-Content 96.0% -

The results for this experiment are shown in Figure 4 for the string techniques, and
in Figure 5 for the vector space and SCAM methods. Note that various string matching
algorithms are capable of distinguishing different types of duplicates, while the vector space
and SCAM measures are all quite similar, producing results most like the sdist! algorithm.
This suggests that, in certain applications, the string-based approaches may yield higher
precision (e.g., locating only duplicates that are photocopies of the document in question
and not other types also present in the database).

4.4 Experiment 4

While the vector space and SCAM techniques are more robust with respect to variations in
reading order (as demonstrated in Experiment 2), this same attribute could prove to be a
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Figure 4: Approximate string matching results for Experiment 3 (the duplicate models).

disadvantage when the precise ordering of terms is crucial to identifying true duplicates.

The goal of this final experiment was to study duplicate detection using a database
that also contained a number of false (i.e., near) duplicates. We injected 49 issues of a
daily electronic newsletter into the same database of 1,000 documents used in our previous
tests. While the content of the newsletter varies significantly from day to day, most issues
share common section headings as well as company- and person-specific references (e.g., the
names of executives, products, partners, competitors). One issue was selected for use as the
query, printed, photocopied light, and then scanned and OCR’ed. The OCR accuracy for the
query was estimated to be 74.2%. All of the documents in the database were “perfect” (i.e.,
electronic) text, including both the intended match and the 48 false duplicates. Figure 6
presents the results for this experiment.

As can be seen in the charts, the vector space methods and SCAM produce less sepa-
ration between the intended duplicate and the remainder of the documents than does the
dist2 string algorithm. Indeed, the presence of so many false duplicates significantly impairs
the ability of the character trigram implementation to rank the true match appropriately.
This confirms that the performance of a given technique depends not only on the condition
of the query and the duplicates in the database, but on the existence of potential near (but
otherwise uninteresting) matches as well.
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Figure 5: Vector space and SCAM results for Experiment 3 (the duplicate models).

5 Conclusions

In this paper we have presented an experimental evaluation of several text-based methods
for detecting duplication in document image databases. All were tested using uncorrected
OCR output for documents that had been subjected to a variety of real-world degradations.
While the techniques under study are generally robust in the face of most types of OCR
errors, there are nonetheless important differences, as we have shown. It appears likely
that the most effective, efficient solution to this problem will be to combine several of the
methods discussed as well as perhaps approaches based on lower-level image features not
considered in the present paper.

Table 7 summarizes the algorithms once again. Here a solid bullet (o) indicates the
broadest class for which a given method will work, while a hollow bullet (o) indicates more
restricted kinds of duplicates it will also locate. Since some of the models subsume others, an
obvious question is “Why bother with the less general ones?” The answer lies in increased
precision for those situations where admitting a larger class of duplicates is undesirable
(e.g., when the targeted duplicates are known to be photocopies). Special cases may also
make it possible to develop more efficient algorithms.

Possible topics for future research include examining the resource requirements (time,
space) for each of the implementations since this may prove more critical than small differ-
ences in ranking ability. The test collection used in the current study was small, and the
range of document analysis errors, while suggestive, was by no means comprehensive. Hence,
the question of handling much larger, more realistic databases is open and will undoubtedly
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Figure 6: Results for Experiment 4 (database containing numerous false duplicates).

raise new issues as well as further opportunities for model and algorithm development.

Finally, as noted earlier a “negative” result, determining that no duplicate exists in the
database, may be just as important for this application as the more common kind of query
analysis presented in this paper. Establishing a methodology for measuring this aspect of
performance would be beneficial.
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