Table Structure Recognition and Its Evaluation

Jianying Hu® and Ramanujan Kashi® and Daniel Lopresti® and Gordon Wilfong?

®Avaya Labs, 600 Mountain Ave, Murray Hill, NJ 07974
bBell Labs, Lucent Technologies, 600 Mountain Ave, Murray Hill, NJ 07974

ABSTRACT

Tables are an important means for communicating information in written media, and understanding such tables is
a challenging problem in document layout analysis. In this paper we describe a general solution to the problem of
recognizing the structure of a detected table region. First hierarchical clustering is used to identify columns and then
spatial and lexical criteria to classify headers. We also address the problem of evaluating table structure recognition.
Our model is based on a directed acyclic attribute graph, or table DAG. We describe a new paradigm, “random
graph probing,” for comparing the results returned by the recognition system and the representation created during
ground-truthing. Probing is in fact a general concept that could be applied to other document recognition tasks and
perhaps even other computer vision problems as well.

Keywords: table recognition, document layout analysis, hierarchical clustering, document understanding, graph
matching, computer vision, pattern recognition, performance evaluation

1. INTRODUCTION

Tables are an important means for communicating information in written media, and understanding such tables is a
challenging problem in document layout analysis. In an earlier paper, we addressed the problem of detecting tables
in multiple media.! The current work builds on this earlier work by recognizing the structure of the detected table.
This forms part of a prototype we have implemented for a complete, end-to-end table understanding system that
takes raw ASCII text as input, detects and parses any number of tables that it might contain, and generates a simple
interactive man-machine dialog allowing a user to access the table data via a spoken language interface.?

For table structure recognition, a number of papers report on methods for determining the layout structure that
rely solely on separator features such as vertical and horizontal lines or column spacing to segment the table into a
structure of cells.>* Others also use OCR results to aid in the segmentation of the table into regions such as body,
title block, column headers and row labels.” The work by Hurst and Douglas is concerned with taking a segmented
table and using the contents of the resulting cells to determine the logical structure of the table.®

A key component of table structure recognition is column segmentation. Columns are the most visually dominant
structural components of a table. Entries in the body of a table are usually laid out in such a way that they can be
visually segmented into distinct groups, each of which spans roughly the whole table body along the vertical direction.
Among previous algorithms for table column segmentation without ruling lines, the most common are the vertical
projection profile based methods.”® Roughly speaking, in these methods the percentages occupied by white space
(or alternatively black foreground) along evenly spaced vertical lines are computed. Then the resulting histogram
is analyzed to search for peaks (or valleys when foreground histogram is used), which roughly correspond to gaps
between columns. The problem with this approach is that when the columns are not perfectly aligned, or when the
gaps between columns are slanted, the resulting histogram suffers from spurious peaks or flattened or completely
smeared peaks, causing the results to be unreliable. A method based on LR(k) parsing has been described, however it
only works for a given class of tables (financial tables).® Kieninger proposed a bottom-up approach where vertically
overlapping words are grouped into blocks.'® Various complex heuristics are then applied to split or merge the
blocks into proposed columns. Because of its pure bottom-up nature and the fact that the heuristics are based on
very local analysis as well, the method suffers when there is “disruption” to the “normal” structure of the columns
(e.g., the presence of a comment line spanning multiple columns, or two cells from different columns accidentally
overlapping with each other), or when there is a gap within a column (e.g., the table in Figure 2). Recently, Ng

Email:{jianhu,ramanuja}@avaya.con {dpl,gtw}@research.bell-labs.com

et al. proposed a machine learning based method for both table detection and column/row segmentation.!! They
designed a set of features for each subproblem and trained classifiers on a specific set of documents (Wall Street
Journal news articles). The performance of these classifiers relies largely on the choice of features and the quality of
training data. It 1s not clear whether the proposed features can generalize to documents in other domains.

In this paper, we describe a technique for recognizing the structure of a detected table region based on hierarchical
clustering to identify columns and spatial and lexical criteria to classify headers. We also present a new paradigm we
call “random graph probing” to evaluate the performance of table parsing algorithms. Preliminary experiments on a
subset of the Wall Street Journal (WSJ) database and a small collection of email messages have produced promising
results.

2. TABLE STRUCTURE RECOGNITION

The goal of recognition is to determine the structure of a given table and identify functional elements such as columns,
rows, headers, etc. Many different terminologies have been used before by various researchers. We adopted one close
to that proposed in Wang’s Ph.D. thesis.!? Defining a table model is itself a difficult issue, since both logical and
layout conventions of tables vary depending on the document type, the subject domain and the medium.'® Clearly,
no model will be able to represent all possible tables. We chose to base our model on Wang’s formalism because it
provides a clean separation of content (logical model) from form (physical/presentational model), offers a rigorous
mathematical representation as the logical model, and allows a large amount of flexibility.

Figure 1 illustrates the terminology used in this paper. At the lowest level, a table contains two types of cells:
Decells for data cells and Acells for access cells. These cells are organized into columns and rows. The column headers
are grouped into a region named box and the row headers are grouped into a region called stub. The header for
box/stub is called a boz head or a stub head. The collection of all the Dcells comprises the body. The body is the
only required region of a table. Acells and all header regions are optional.

Title
Stub/Box head Box
\ STOCKREPORT |
COMPANY ~— ~ II7 "TODAY'S ~ ~ ~ ~ PNESTERDAY'S ~—
L_op __ L EN __ CHANGE OP
BLUE INC 75 1 12" +118 74

Row

REDINC 22 | 1/4 +5/16 21
YELLOW LTD 10|I 33/8 —113/16 10
PURPLE INC 27
6 +11/16 66
NKLTD 13 07/16 +11/16 13

R i T o

Stub Dcell Column Body

Figure 1. Table terminology (adapted from Wang’s Ph.D. thesis).

2.1. Column Segmentation

The input to the column segmentation algorithm is the detected table region. It is assumed that this region contains
all or nearly all the lines occupied by the body of the table. Depending on the layout of the particular table, 1t could
also contain lines from column headers. Clearly if the the table has row headers, they are included in the region as
well. At this point, no distinction is made between the column of row headers (stub) and a “normal” column.

Hierarchical clustering is applied to all words in this region to identify their likely groupings. Such groupings
are represented as a binary tree, where the leaves represent words, the root represents the whole body, and the

intermediate nodes represent nested groupings at different levels. This cluster tree is constructed in a bottom-up
manner. First the leaf level clusters are generated, where each word belongs to a unique cluster. Then the two
clusters with the minimum inter-cluster distance are merged into a new cluster. This new cluster is then represented
by a new interior node with the two original clusters as its children. The merging process is repeated recursively
until there is only one cluster left without a parent, which is then represented by the root node.

Efficient algorithms for general hierarchical clustering can be found in many text books.!* There are two choices
to be made in a particular application: how to define the distance between any two basic elements, and how to define
the inter-cluster distance. In our application the basic elements are words. Since columns are grouped along the
roughly vertical direction, we represent each word w; for ASCII text by its starting and ending horizontal positions
represented by the position vector p; = (s;, €;), also called horizontal span or simply span. The distance between two
words w; and w; is then defined as the Fuclidean distance between the two position vectors p; and p;. Note that
the current definition represents the spatial distance between words in ASCII documents. Other types of distances,
such as syntactic (e.g., a numeric string is different from an alphabetic string) or semantic (e.g., the numeric string
representing a year is different from the numeric string representing a stock price) distances are also potentially
useful. For inter-cluster distance computation, we chose to use the so called “average link.” In other words, the
distance between two clusters is computed as the average of the distances between all inter-cluster pairs of words.

The cluster tree generated in the above manner represents the hierarchical structure of the table body in terms
of vertical grouping of words. Each cut across the tree provides one way of clustering these words. We need to find
the cut such that each resulting cluster corresponds to a column. Such a cut is called the column cut.

The column cut 1s found using a breadth-first traversal of the cluster tree starting from the root. Two queues
of nodes are maintained, one labeled closed and initialized to be empty, and the other labeled open and initialized
to contain only the root node. Each node in the open queue is removed and examined to see if it should be further
split. If the decision is “yes,” then its children are pushed onto the end of the open queue. If the decision is “no,”
then the node is pushed onto the closed queue. The process continues until the open queue becomes empty, at which
point the nodes in the closed queue represent the proposed columns.

Clearly the crucial step in generating the column cut is to decide if a node should be split. A poor decision
would lead to either split or merged columns. To help make this decision, we define a measurement of the spacing,
called inter-cluster gap, between two clusters C7 and C'y as described next. For each line containing words from both
clusters, compute the minimum gap between a word from C7 and a word from C3. The median of all the minimum
gaps is then defined as the the inter-cluster gap between 7 and C5. By definition, a leaf node cannot be split
further. The decision as to whether a non-leaf node should be split is made using the following heuristics. Assuming
the inter-cluster gap between the two children of a node 1s g:

1. The root node is always split, based on the assumption that a table has at least two columns.

2. The node is split if ¢ is larger than or equal to a predefined constant G (currently set to 2). The assumption
here is that a large enough gap always indicates column separation.

3. The node is also split if ¢ < G, but g/my; > «, where my is the average inter-cluster gap between adjacent
pairs of already identified columns (nodes in the closed queue), and « is a number between 0 and 1.0. The idea
is that a small gap could also indicate column separation if such small gaps occur repeatedly.

4. The node is not split if it does not satisfy at least one of the above three conditions.

Note that even though the distance between words is currently defined only in terms of horizontal distance, the
nature of the hierarchical clustering algorithm insures that the column segmentation algorithm proposed can handle
imperfect vertical alignment very well. This ability 1s demonstrated in Figure 2 with a table containing ragged
columns as well as columns with a small gap inside. As shown in the figure, all columns are clustered properly.

2.2. Header Detection and Row Segmentation

As mentioned earlier, headers including box (containing column headers), stub (containing row headers) and stub/box
head are all considered optional. The current algorithm identifies potential headers based on spatial and some simple
syntactic rules.

STOCK REPORT

COMPANY TODAY'S YESTERDAY'S
— OP CHANGE OP __EN___CHANGE _
BLUE INC 75 11/8 74 41/4
GREEN.COM 89 2 88 - 213/16
REDINC 22 5/16 21 3/8

YHLLOW LTD 10
PURPLE INC 27

113/16 10
25/8 27 -11/8

BROWN.COM 68 +11/16 66 15/8
PINKLTD 13 11/16 13 -238/8]
Detected table regi on

Figure 2. A detected table region and its column segmentation using hierarchical clustering.

After column segmentation, the columns are first sorted according to their starting position, then the upper
boundary of the detected table region i1s adjusted through a consistency check. The reason for this step is that since
column headers do not always have perfect alignment with the columns, the table region delineated by the table
detection algorithm may or may not include the headers. In order to get a consistent starting point, a correction step
is applied to find the exact boundary between table body and potential headers. The adjustment is carried out using
a lexical distance measure. We first define two types of strings: a string is considered alphabetic if it contains mostly
alphabetical characters and non-alphabetic otherwise. A line is consistent with the columns if most of the words in
the line are of the same type as the dominant type of its overlapping column, otherwise it is inconsistent. We define B
to be the maximum possible number of lines in a box (currently set to 5). First the top B lines of the proposed table
body are examined one by one. If the top-most line is inconsistent, than the maximal list of consecutive inconsistent
lines from the top are removed from the body. Otherwise, the B lines directly above the table are examined one by
one starting from the bottom. Each consistent line is added to the body until an inconsistent line is found.

After correction, we assume that the upper boundary of the table body correctly separates the headers from the
body. Then, a region directly preceding the table body is identified as the potential box zone. The lower boundary
(inclusive) of the zone is the lowest non-empty line above the first line of the table body and the upper boundary
(inclusive) of the zone is set to be the line below the lowest empty line above the lower boundary, or B lines above
the lower boundary, whichever is lower. This zone is then searched for potential column headers.

The following layout conventions for column headers hold for most tables we have encountered: (1) the header for
each column is roughly aligned with the column; (2) hierarchical headers are placed such that the high level header
is above its subsidiary headers and centered horizontally with regard to the columns represented by the subsidiary
headers. Based on these observations, the lines in the potential box zone are examined one by one from the lower
boundary to the upper boundary. First a line is segmented into phrases. This is currently carried out by simply
considering a string of at least two consecutive spaces as phrase separators. Then the list of associated columns for
each phrase is computed by searching for the maximal list of consecutive columns such that the span of each column
in the list overlaps the span of the phrase. The following heuristics are then used to judge if a line is a header line:
(1) every phrase in a header line must be associated with at least one column; (2) if a phrase in a header line is
associated with more than one column, then each subsidiary column must already have its own header assigned. To
capture the potential hierarchical structure, headers are represented by a tree structure which is initialized with the
root representing the box, and & leaf nodes corresponding to the & columns. We define the joint span of a list of n
spans p; = (s;,¢i),i = 1...nas p1., = (min(s;, ¢ = 1...n),mazx(e;, i =1...n)). Once a higher level header is found,
the corresponding intermediary node is generated, and the joint span of its subsidiary nodes is used to analyze the
next line. Figure 3 shows the box of the table in Figure 1 represented as a tree. This tree is then traversed to assign
headers to each columns (higher lever headers are shared by more than one column).

The following assumption is made regarding row headers: row headers, if present, are always contained in the
left-most column of the table. In other words, unlike column headers which could be laid out hierarchically in

ROOT

y Y Y Y Y

BLUE INC 75 1/2 +11/8 74 9/16 -41/4
GREEN.COM 89 1/4 +2 88 5/8 -213/16

Figure 3. The tree representation of the box of the table in Figure 1.

separate horizontal layers, row headers are always arranged in a single vertical layer due to the physical constraints
in arranging ASCII tables. If after column header detection the header of the left-most column is missing then the
column is labeled stub. On the other hand, if the header of the left-most column is present the case is ambiguous;
it could be a common column or it could also be stub with the stub head on top. We currently label them all
as the latter since it appears that the left-most column of most tables can be interpreted as stub. A more precise
interpretation can only be achieved with deep semantic analysis of the table elements.

Row segmentation is carried out after header detection. The difficulty here is that some or all of the cells in
a table row could fall on more than one line and there 1s often no obvious separator between rows. The following
heuristics have been adopted in our algorithm: (1) a blank line is always a row separator; (2) if a line contains
non-empty strings for the stub (if it exists) and at least one other column, or if it contains non-empty strings for a
majority of columns, then it is considered a core line, otherwise it is considered a partial line. Each table row contains
one and only one core line and a partial line is always grouped with the core line above it. Occasionally there are
tables where partial lines are grouped with the core line below. Such cases could be detected using statistical syntax
analysis, such as N-grams. Figure 4 shows a table with multi-line rows and the row segmentation.

Fea_rl ess Forecast ers
Economic growth, in percent

FI RST SECOND
QUARTER

Figure 4. A table and its row segmentation.

A difficult situation arises when hierarchical row headers are projected onto a single column (Figure 5). In this
case, a higher level header (the year “1993” is a qualifier for both “Winter” and “Fall”) is undetected and merged
with the neighboring lower level header. Since in such layout no spatial boundary is provided between headers at
different levels, distinguishing a higher level header from the spill-over of a lower level header is a very difficult task.
Solving this problem will again likely involve semantic analysis.

Subj ect Assi gnment s Exans Fi na

assl ass? ass3 Mdterm Fi nal G ade
1993
W nt er 80 75 85 70 80 80
Fal | 70 85 80 75 80 80
1994
W nt er 95 90 95 85 90 90
Fal | 75 85 80 85 80 80

Figure 5. A table with hierarchical row headers projected onto a single column.

3. EXPERIMENTAL EVALUATION

In this section, we present our approach to evaluating table structure recognition. We describe in turn the graph model
we have adopted, a system we have created for ground-truthing table structure, and our procedure for comparing
the output from table recognition to the corresponding ground-truth. The paradigm we have developed is a general
one, and could be applied to other algorithms that attempt to extract structure from documents. We also present
preliminary experimental results of using our algorithm to recognize two small corpora of tables.

3.1. Graph Model

While it is traditional to regard document analysis results as tree-structured, we have adopted a slightly more general
representation, a directed acyclic graph (DAG). This flexibility is important both because there are real-life tables
that fall outside the Wang model, and because the output from an imperfect recognition process may not necessarily
correspond to a legal instance of a table.

There are two basic classes of nodes in our table DAG: leaf nodes which have no children and which contain
content corresponding to a specific region on the page (i.e., one or more text strings), and composite nodes which
are simply unordered collections (sets) of previously-defined leaf and composite nodes. Every node has an optional
label. There is, however, no rigid policy enforcing how nodes must be labeled relative to one another. Instead,
conventions can be developed on a per-application basis. Indeed, our plan is to apply this same general formalism
to other document analysis tasks in the future.

An example of a table DAG is depicted in Figure 6 (to keep the figure comprehensible, we have suppressed many
of the edges and nodes present in the full graph). In this graph, there are 28 leaf nodes labeled “DCell” and 14 leaf
nodes labeled “ACell,” while the node labeled “Column” on the right is a composite node consisting of all the nodes
associated with the last column in the table. Note that the bottom-rightmost “DCell” (with content “—2 3/8”) is a
child both of a node labeled “Row” and of another node labeled “Column;” hence, this graph is not a tree.

3.2. Ground-Truthing

To enable the viewing of document analysis results and to support the ground-truthing process, we have developed
an interactive tool we call Daffy for browsing and editing table DAG’s. The user interface portions of Daffy are
written in Tcl/Tk, a powerful and well-known scripting language developed by Ousterhout.!®

Daffy makes it possible to:

1. display and edit graphical mark-up

2. define new mark-up types

3. examine hierarchical structure

4. print and save PostScript page images

5. run algorithm animation scripts for visualizing the effects of document analysis

YESTERDAY"S

AcCell
ACell
OPEN CHANGE

ACel

COMPANY TODAY"S
Il ACell

OPEN CHANGE
ACell ACell ACell ACell \

BLUE INC 75 1/2 + 1 1/8 74 9/16 - 4 1/4
ACell DCell DCell DCell DCell
GREEN. COM 89 1/4 + 2 88 5/8 - 13/16
ACell DCell DCell DCell DCell

RED I NC 22 1/4 + 5/16 21 13/16 - 3/8
ACell DCell DCell DCell DCell
YELLOW LTD 103 3/8 ||- 1 13/16 101 -
ACell DCell DCell DCell DCell
PURPLE | NC 27 11/ 16 - 25/8 27 5/8 -11/8
ACell DCell DCell DCell DCell

BROWN. COM + 11/16 66 11/16 - 15/8

ACell DCell DCell DCell DCell

PINK LTD
ACell

130 7/16
DCell

+11/16 Composite Cells

< Leaf Nodes >

Figure 6. Graph representation for table recognition results.

Input is accepted in both image (TIF) and text (ASCIT) formats.

Figure 7 presents a screen snapshot of Daffy running on an SGI O2 workstation. The main window, on the right,
shows the same sample table document as shown in Figure 1. Several layers of mark-up are visible — on-screen these
are displayed in color and are much more legible. Structure corresponding to the leftmost table column which the
user has selected 1s displayed in the child window on the left in the snapshot.

File Edit

Info Mark-Up Display Zoom Animate

STOCKE REPORT

**% aolumn (616}

COMPRNY
ELUE INC REEN . COM

GREEN. COM RED INC
RED INC ELLOW LTD
YELLCW LTD PIURPLE THNC
PURPLE INC BROWN, COM|
BECWI ., COM i?IN LTD .
PINKE LTD

““““““ Acell (502)
ELUE INC

Acell (512) N

GREEN. COM

****** Acell (522)

7

= T

W Color W Content Close

Figure 7. Daffy screen snapshot.

Daffy supports the full generality of the graph model described in the preceding section. In particular, it manages
and updates the table DAG across operations that include adding and deleting leaf nodes, grouping and ungrouping
to create composite nodes, moving and resizing nodes, copy-and-pasting, editing type definitions, etc. Consistency
of the graph is maintained automatically without placing burdensome restrictions on the user.

3.3. Random Graph Probing

Given the table DAG’s for a recognition result and its corresponding ground-truth, it is natural to consider comparing
the two as a way of determining how well the algorithm has done. Attempting to compare the graphs directly, however,
gives rise to two dilemmas. The first is that a solution would imply a solution to the graph isomorphism problem
which is not likely to have an efficient algorithm.'® While heuristics exist that are sometimes fast, their worst-case
behavior is still exponential.'” Hence, the problem remains a difficult one.

The other obstacle i1s that there may be several different ways to represent the same table as a graph, all
equally applicable. Minor discrepancies in labeling and/or structure could create the appearance that two graphs
are dissimilar when in fact they are functionally equivalent from the standpoint of the intended application. Forcing
one graph to correspond to the other through a series of rigidly defined editing operations obscures this important
point.

At the other end of the spectrum, we could embed our table recognition algorithm in a query-based table processing
system,? and measure the performance of the complete system on a specific task from a user’s perspective: Does
it provide the desired information? (this is “goal-directed evaluation” as discussed by Nagy!®). This approach has
its own shortcomings, however, as it limits the generality of the results and makes it difficult to identify the precise
source of errors that arise when complex processes interact.

We have developed a third methodology that lies midway between these two which works directly with the graph
representation. However, instead of trying to match the graphs under a formal editing model, we probe their structure
and content by asking relatively simple queries that mimic, perhaps, the sorts of operations that might arise in a
real application.

Conceptually, the idea is to place each of the two graphs under study inside a “black box” capable of evaluating
a set of graph-oriented operations (e.g., returning a list of all the leaf nodes, or all nodes labeled in a certain way).
We then pose a series of probes and correlate the responses of the two systems. A measure of their similarity is the
number of times their outputs agree. Note that it is essential the probes themselves have simple answers that are
easily compared. They might return, for example, a count of the number of nodes satisfying a certain property (e.g.,
possessing a particular label), or the content of a designated leaf node. The probing becomes recursive if the target
of a probe is a graph itself (i.e., a composite node). The intention is that this probing process abstracts the access
of content away from the specific details of the graph’s structural representation.

While the paradigm is open-ended, currently we have defined three categories of probes:

Class 0 These probes count the number of occurrences of a given type of node in the graph. Referring again to
Figure 6, a typical Class 0 probe might be paraphrased as: “How many nodes labeled ‘Column’ does the graph
have?” The answer in this case is “5.”

Class 1 These probes combine content and label specifications. Currently they apply only to leaf nodes. A repre-
sentative Class 1 probe might be: “How many leaf nodes labeled ‘Acell” with content ‘OPEN’ does the graph
have?” The reply here is “2.”

Class 2 These are the most sophisticated probes we have implemented to date. Class 2 probes mimic simple
database-type queries, although phrased entirely in terms of graph manipulations. For a given target node,
keys that uniquely determine its row and column are identified. These are used to index into the graph,
retrieving the content of the node (if any) that lies at their intersection. An example of a Class 2 probe for
the graph in Figure 6 is: “What is the value of “TODAY’S OPEN’ for ‘RED INC’?” The response would be
“221/47

The generation of a probe set is based on one or the other of the graphs in question. That graph will obviously
return the definitive responses for all of the probes in the set, while the other graph will do more or less well depending
on how closely 1t matches the first. We then repeat the process from the other direction, generating the probe set
from the second graph and tallying the responses for both. The probes are synthesized automatically, working from
the table DAG output from the recognition and ground-truthing processes described earlier. For specifying probes,
we have implemented a graph-oriented query language embedded in a general-purpose programming language; this
offers a great deal of power and flexibility.

3.4. Experiments

The test database was composed of 26 Wall Street Journal articles in text format (WSJ database) and 16 email
messages. These were selected by running our table detection algorithm on larger collections.! ~ We chose test
examples where the output from detection was reasonably good (but not necessarily perfect), passing over particularly
“hard” cases where tables were completely missed in the text, split, or merged, or where the human ground-truthers
differed significantly in their opinions of the “true” structure of a table. The intention was to examine the performance
of table structure recognition across a range of reasonably well-behaved real-world inputs. Each test sample was in
a single column format and contained one or more tables. Tables along with the detected boundaries were input to
the table recognition algorithm described in Section 2.

As explained in Section 3.3, probing was done bidirectionally, i.e., the recognition result was probed based on its
corresponding ground-truth and vice-versa. This involved generating a set of queries to probe the various nodes of
the graph which represent the table structure. Three classes of queries were generated in the probing experiment.
The agreements of the probes for each of the three classes is plotted in Figure 8 for the WSJ documents and Figure 9
for the email documents. Also superimposed on the plot is the total agreement (combining all the classes). The
overall agreement was 82% for the WSJ documents and 73% for the email documents. The better performance for
the WSJ database, we believe, is due to the more homogeneous collection of its documents with a few classes of table
structures. In sharp contrast, the email documents were a heterogeneous collection with varied layouts.

100

90— —

80| I g

70| -

60 f

50— —

401~ s

30 =

20— ! |
—— Combined

10+ Il Class 0 |
[Class 1

ol Il Class 2

0 5 10

15
Document Index

Class Agreement

Figure 8. Class agreements for documents in the WSJ database.

100
90— -
80— —
70 -
€
[}
£ 60 -
[
o
& 50 B
1]
2 sl]
O
30— -
201~ —— Combined |
Il Class 0
10— [Class 1 n
Il Class 2
0 e
0

Document Index

Figure 9. Class agreements for documents in the email database.

Figure 8 contains several documents for which the Class 2 score was zero. One reason was that the table in such
documents had only two rows (a row containing headers and a row containing data) and no Class 2 queries were
generated. Another reason was that, currently, our algorithm does not capture hierarchical row headers and this
leads to incorrect recognition of table structure in such tables. Another cause of low performance is the presence
of multiple interpretations of the structure of a table. As seen from Figure 8, the class accuracies are lowest for
Document 7. The corresponding document is shown in Figure 10. One plausible interpretation of the table 1s that
it has three columns, with the leftmost column indicating the rank, the center column corresponding to names, and
the third column corresponding to the vote count. This is the interpretation adopted in the ground-truth. The
recognized result, however, has merged the first two columns as indicated in Figure 10, which represents a different,
vet also plausible, interpretation. This difference in the layout structure between the recognition result and the
ground-truth leads to its poor performance. The table is complicated further by the fact that a few names share the
same rank (the 8th, 11th and 14th). This can be deduced only from a semantic analysis of the text. This example
demonstrates that several equally plausible interpretations (ground-truths) of a single table can be made and this
makes the evaluation task extremely challenging.

Heroes of the CEOs
The Wall Btreet Journal survey on executive style asked
CEOs to name their business heroes. Those named most often
and number of wvotes:
Lee TACOCCA] v v v v v v m v v o s s s n o oo s s m oo on s snnnnnss
Thomas Watson SF .| oot it s e e e e e e et e e e aen
Hentry Fordl @ it e e i i st s st vttt tme st nnnes
Alfred Bloan|o e e e e e e e
| S == T = o
Walter Wriston|ttt e e e e e e e e e ene e
Thomas Edisonttt i e e e et e e e
ANAdYrew CaFrnegdle] v v i i et s st vttt st m st en e
N = . (o 1=
Dawvid Packard| it e e e e
Peter Drucker| ... it i it e e et s e e e e a e ae e en
Feginald Jones| v ettt i e i e i i ettt e e e s
Paul Volcker| .o i it i i e e i e
My Tather| @i i i it e s i e e e e e e e e
John D. Rockefeller| i i,
Charles Wilaor| @ .. it e e e s e e e e e e e ee e e

s S By S g B

=
=

=
=t

Figure 10. Screen snapshot of Document 7 in the WSJ database.

As a first step towards correlating our evaluation method based on graph probing with a user’s perception of
the quality of the recognition results, we conducted an informal experiment. The experiment was performed with
three subjects who were not involved in the design of the underlying algorithms. The subjects were shown six test
documents (chosen from each of the datasets, labeled A through F' for email documents and a through f for WSJ
documents), along with their associated ground-truths using the Daffy interface. The six test documents were shown
with the table structure marked-up by the recognition algorithm. The corresponding ground-truth was the same
document with the table structure marked-up by one of the authors. The task was to rank-order the six documents
based on how good a job the algorithm performed at recognizing the table structure regions, as defined by the
ground-truth, with rank one corresponding to the best match in the group of six. The subjects were asked only to
look at row structure, column structure, Acells and Dcells. They were free to choose any methodology to obtain an
overall similarity measure.

The rankings from the three subjects are shown in Table 1 for the email dataset and in Table 2 for the Wall Street
dataset. The fourth column represents the computed average ranking obtained by the three subjects. Also shown
in the last columns for both the tables are the rankings obtained by using our random graph probing technique
to compare the results from the recognition algorithm to the ground-truth. As seen from the tables, the subjects’
average ranking compares well with that obtained by our evaluation measure. Individual differences in ranking
among subjects are due to the different strategies adopted by each individual to obtain an overall similarity measure.

The larger inconsistency between subjects suggests that it is difficult to judge recognition performance.

Doc | Rankings from subjects | Average Ranking based on
Index | Sub1 Sub 2 Sub 3 | Ranking | Random Graph Probing

A 1 1 1 1 1

B 4 2 2 2 2

C 2 5 5 4 3

D 3 3 6 3 4

E 6 6 3 6 5

F 5 4 4 5 6

Table 1. Ranking from the subjects and our evaluation procedure for the email dataset.

Doc | Rankings from subjects | Average Ranking based on
Index | Sub1 Sub 2 Sub 3 | Ranking | Random Graph Probing

a 1 1 1 1 1

b 2 6 2 3 2

c 3 2 3 2 3

d 6 5 4 6 4

e 4 4 6 5 5

f 5 3 5 4 6

Table 2. Ranking from the subjects and our evaluation procedure for the WSJ dataset.

4. CONCLUSIONS

This paper describes algorithms that recognize tables in ASCII text. Random graph probing was introduced as
a new paradigm for evaluating the performance of a table recognition system. Preliminary experiments on ASCII
documents demonstrated the effectiveness of the approach. Similar experiments need to be conducted for documents
in other media such as scanned images where mechanisms to deal with OCR errors also have to be addressed.

In the area of table understanding, there remain many directions for future work. For example, there is a need to
explore more sophisticated table quality measures such as including syntactic and semantic elements of documents
both for detection and recognition. Another direction for further study is concerned with the generation of more
sophisticated probes for evaluation of table structure and for extending this paradigm to evaluate other algorithms
that attempt to extract structure from documents, and more work on correlating this measure with users’ perception
of the quality of the recognition results.

REFERENCES

1. J. Hu, R. Kashi, D. Lopresti, and G. Wilfong, “Medium-independent table detection,” in Proceedings of Doc-
ument Recognition and Retrieval VII (ISET/SPIE Electronic Imaging), vol. 3967, pp. 291-302, (San Jose,
California), January 2000.

2. J. Hu, R. Kashi, D. Lopresti, and G. Wilfong, “A system for understanding and reformulating tables,” in
Proceedings of the 4th IAPR International Workshop on Document Analysis Systems, (Rio de Janeiro, Brazil),
December 2000. To appear.

3. K. Zuyev, “Table image segmentation,” in Proceedings of the Fourth International Conference on Document
Analysis and Recognition, pp. 705-708, (Ulm, Germany), August 1997.

4. E. Green and M. Krishnamoorthy, “Recognition of tables using table grammars,” in Proceedings of the Fifth
Annual Symposium on Document Analysis and Information Retrieval, pp. 261-277, (Las Vegas, Nevada), 1995.

5. C. Peterman and C. Chang, “A system for table understanding,” in Proceedings of the Symposium on Document
Image Understanding Technology, pp. 55-62, (Annapolis, Maryland), 1997.

6. M. Hurst and S. Douglas, “Layout and language: Preliminary investigations in recognizing the structure of
tables,” in Proceedings of the Fourth International Conference on Document Analysis and Recognition, pp. 1043—
1047, (Ulm, Germany), 1997.

10.

11.

12.
13.

14.
15.
16.
17.

18.

S. Chandran, S. Balasubramanian, T. Gandhi, A. Prasad, and R. Kasturi, “Structure recognition and in-
formation extraction from tabular documents,” International Journal of Imaging Systems and Technology 7,

pp. 289-303, 1996.

. D. Rus and D. Subramanian, “Customizing information capture and access,” ACM Transactions on Information

Systems 15, pp. 67-101, January 1997.

. W. Kornfeld and J. Wattecamps, “Automatically locating, extracting and analyzing tabular data,” in Proceedings

of the ACM SIGIR Conference on Research and Development in Information Retrieval, pp. 347-349, (Melbourne,
Australia), 1998.

T. G. Kieninger, “Table structure recognition based on robust block segmentation,” in Proceedings of Document
Recognition and Retrieval V (ISET/SPIE Electronic Imaging), vol. 3305, pp. 22-32, (San Jose, California),
January 1998.

H. Ng, C. Y. Lim, and J. Koo, “Learning to recognize tables in free text,” in Proceedings of the 37th Annual
Meeting of the Association for Computational Linguistics, pp. 443-450, (Maryland, USA), 1999.

X. Wang, Tabular abstraction, editing, and formatting. PhD thesis, University of Waterloo, 1996.

D. Lopresti and G. Nagy, “Automated table processing: An (opinionated) survey,” in Proceedings of the Third
TAPR International Workshop on Graphics Recognition, pp. 109-134, (Jaipur, India), September 1999.

A. Jain and R. C. Dubes, Algorithms for Clustering Data, Prentice Hall, 1988.

J. K. Ousterhout, Tcl and the Tk Toolkit, Addison-Wesley, Reading, MA, 1994.

M. R. Garey and D. S. Johnson, Computers and Intractability: A Guide to the Theory of NP-Completeness, W.
H. Freeman and Company, San Francisco, CA, 1979.

B. T. Messmer and H. Bunke, “Efficient error-tolerant subgraph isomorphism detection,” in Shape, Structure
and Pattern Recognition, D. Dori and A. Bruckstein, eds., pp. 231-240, World Scientific, Singapore, 1995.

G. Nagy, “Document image analysis: Automated performance evaluation,” in Document Analysis Systems, A. L.

Spitz and A. Dengel, eds., pp. 137-156, World Scientific, Singapore, 1995.

