Sample (short and simple) Requirements Specification

Line Editor with Multiple Undo/Redo
Purpose: Develop a simple text editor, whose most interesting feature will be multiple undo/redo, i.e., it should be possible to undo any sequence of commands that changes the state of the text in the editor and correspondingly redo them.

Scope: The line‑editor, loosely based on Unix ed, will have just a few commands, as described below. The emphasis is on undo rather than a full‑blown editor. This program will take a team of 2-3 students about two weeks to analyze, design and implement.

Definitions:

A line‑editor is a program that allows a user to examine or modify text files by entering commands on a line in response to a prompt.

A prompt is one or more characters emitted by a program letting the user know that a program is waiting for a command.

A command is a character that the user enters telling the editor to perform some operation, such as deleting a line.

Functional specification: The line‑editor will run indefinitely, prompting the user for commands, until the user enters q. It will respond to the following commands:

r <filename>

Read a file into an editing buffer.

w

Write buffer back into the file (ask if no file read).

p

Print the file, with line numbers.

g <line‑num>

Go to line‑num, and print out that line.

i

Insert lines before current line, up to a line with just "."

d

Delete current line.

c

Delete current line and insert new ones.

u

Undo the previous command (that changed the buffer).

f

Forward to the previous command (redo).

q

Quit line‑editor (ask if file has not been saved)

Undo/redo apply to commands that actually change the buffer (r, i, d, c), for up to 25 commands. If user input is unrecognizable as a command, editor will prompt for another command.

System constraints:
· Will run on PCs under Windows or Unix/Linux from command line.
· Will respond to user inputs with minimal response time (less than second per command).

· This is a prototype; future releases should be able to add more commands or features.

Stakeholders: Sue (project manager), Joe (analyst), Harry (librarian), Jan (customer)
Project schedule and milestones: use PERT or GANTT chart?

Individual assignment: Develop use cases that show overall system behavior and at least a couple of its more interesting features; completeness is not necessary during inception.

Team assignment: For each term project, the analysts will then develop a requirements specification that satisfies the customer. This document should address at least the above issues. Supplement your functional specification of system behavior by developing a few UML-style use cases (in written and/or graphical form) to show overall system behavior its more interesting features.
