Experiences with

The Universal Machine:

A Multimedia Introduction to Computing
Glenn D. Blank, EECS Department, Lehigh University, USA, glenn.blank@lehigh.edu

and

Robert F. Barnes, EECS Department, Lehigh University, USA, rfb1@lehigh.edu

(http://www.eecs.lehigh.edu/~glennb/um)

There are a great many books introducing computer science, yet few use the computer itself as a dynamic instructional tool. The floppy disks containing source code have lately been replicated as web sites. Interactive multimedia opens a door for students whose learning styles lean more to the concrete, participative approach, rather than the typically more abstract, reflexive approach of most computer science textbooks. Our experience confirms our approach, by way of significantly improving final examination scores.

We have written yet another textbook for the first semester course on computer science (CS0 or CS1), published by WCB/McGraw-Hill in 1998. It is accompanied by a multimedia CD-ROM. Media-rich material makes computer science accessible to a broader audience and stretches what an introductory course can cover. There are still relatively few CS1 books that emphasize the breadth of computing as an intellectual discipline, rather than as just programming. Nevertheless, CS1 also requires programming in some language, such as C++. Our multimedia presents the dynamic aspects of program structure and provides online help driven by a student’s errors. Though C++ is now the most popular language for introductory courses, its complexity poses certain disadvantages as well. We have therefore focused on a subset of C++ (which we call C++--), together with a integrated programming environment catering to beginners. Finally, we believe it is essential to teach problem-solving strategies before taking up programming--especially before the student dives into a programming language as complex as C++! The multimedia helps students visualize and experiment with analytical and analogical problem solving strategies.

We divide the textbooks for CS1 into three major families:

· Introduction to Programming (in Pascal, Ada, Scheme, C++, Java, etc.). This is by far the largest family. For example, Cooper and Clancy (1982) made a breakthrough by emphasizing top-down decomposition as early as possible. But computing is more than programming. An introductory course that concentrates only on programming misleads students about the nature of computer science as a discipline. Moreover, with the advent of object-orientation, programming is more than functional decomposition, on which these texts typically concentrate. Reuse of software from class libraries acknowledges the importance of analogical reasoning and “middle-out” composition.

· Breadth of computer science. Many computer scientists feel strongly the need for more breadth in the first course in computing, as evidenced by the recommendations of Tucker (1991), urging that an introductory course in computing introduce various knowledge areas of the discipline. A few texts have emerged that respond to these recommendations. For example, Brookshear (1994, 1999) surveys the field, with the study of algorithms as its foundation. However, this approach relegates programming to a secondary activity covered in laboratories. While programming is not all there is to computer science, it is nevertheless an essential component, especially if it is understood as computational problem solving. Moreover, we want students who take an introductory course to be prepared for more advanced courses in computer science, which will inevitably involve programming as a way of developing and testing solutions to problems.

· Computer literacy. Designed primarily for non‑majors, these books devote much space to skills with particular word processors, spreadsheets, etc. There is also much important material on social and ethical issues involving computers, as well as considerable material on the historical background of computers and computing. However, there is seldom much material that teaches students to use computers in non‑trivial ways. For example, Patterson et al. (1988) devotes considerable space early in the text to spreadsheets, databases, and word processors. These are useful skills, but could be covered in tutorials, either in labs or self‑paced material. Moreover, the exercises are directed only toward the standard simple sort of applications, and in our experience, students have often felt them to be “make‑work.” Such books seldom give the flavor of what either programming or the discipline is like, and so offer little inducement to the student to go further in the field.

Are these distinct categories of texts are appropriate? They do address what has traditionally been seen as distinct populations: (1) students entering the first course of a computer science curriculum; (2) students desiring a limited experience of programming, often to fulfill a quantitative distribution requirement; and (3) students seeking a general overall knowledge of computers. We think this way of dividing up students—largely freshmen—is flawed. Programming texts aimed at potential majors do not provide the broader exposure to the discipline, or historical, social and ethical issues, that these students also need. Many entering majors have only hazy ideas about the propriety of copying software, whether from vendors or each other, or about the impact of computing on privacy, or about the vast information accessible via wide area networks. In fact, often they have had only enough exposure to programming (of a sort we might better describe as “hacking”) to be dangerous, and are badly misinformed about the nature of computing. Additionally, in our experience there is also a continuing population of students who arrive in an introductory programming course with little computer experience and without intent to go much further. Once in the introductory course, however, they become interested enough to continue the subject and eventually become computer science majors. The needs of all these students should be addressed.

The Universal Machine therefore has three major goals, which are reflected in the overall structure of both the book and the multimedia material:

1. To emphasize the breadth of computing as a discipline. A narrow concentration on programming can lead to a misconception that computer science is little more than programming. True, computer scientists use programming as an experimental tool, but like other scientists, they emphasize abstraction. They also use mathematical techniques to study computing theory as well as engineering techniques to improve the design of effective systems. (Denning (1988) emphasized these three approaches to the study of computing: abstraction, theory, and design.) We therefore follow the recommendations of Tucker (1991) by introducing a broad treatment of computing as an intellectual discipline, with topics ranging from computer architecture to artificial intelligence, from computer networks to the social and ethical issues of computing.

2. To encourage students to think about and practice programming as systematic problem solving. An early chapter examines three alternative approaches to problem solving: hacking (illustrating the difference between blind and informed hacking with the well-known fox-goose-corn problem), analytical (which includes top-down decomposition), and analogical (ranging from copy and paste to object-oriented reuse and inheritance). Early on, students practice these approaches with a simple programming environment called Knobby’s World. “Knobby the Knowbot” is a simple agent that moves and picks up objects in a micro-world. Using a graphical simulation program, students first learn to program Knobby by issuing simple commands, then by progressing to defining and calling macros, and finally by writing programs. Knobby is a relative of Karel the Robot (Pattis 1981). The purpose of Knobby is in part much the same as that of Karel--to serve as a “gentle introduction to the art of programming”. However, Knobby is somewhat more versatile than Karel in that he has two “whiteboards” that serve as variables and is able to input and output their values, since these are key concepts and some students need concrete examples of how they work. Later chapters studying the software life cycle emphasize the systematic use and reuse of functions and classes.

3. To provide an introduction to computer programming that gives an adequate background for a continuation to a second‑semester course suitable for computer science majors, without disenfranchising those students without previous computer experience. Students will learn to program in C++, a modern programming language widely used for developing large object-oriented software systems. Because C++ (unlike other programming languages such as Pascal, BASIC or LOGO) was not intended as instructional language, it can be rather daunting for beginners. This text therefore concentrates on a subset of this very rich and complicated language, which we dub C++--. The multimedia CD-ROM includes a tool called Lookout which will “look out” for errors in C++-- programs. Beginners typically have difficulty understanding the error messages that modern compilers emit. Lookout provides detailed explanations of error messages. Moreover, the multimedia, after presenting expository and interactive material on C++, invites the student to invoke Lookout to study sample programs and develop simple programs. Thus the student learns abstract presentation (in both text and audio mode) interactive exercises in the multimedia itself, then by example and problem solving in the integrated Lookout environment. Lookout also supports a small library of software classes which lets students solve a variety of non-numerical problems using simple graphical shapes, musical notes, external files, and strings and arrays that catch “out of bounds” errors. For those who want to go beyond the C++-- subset, there are optional “Beyond C++--” sections at the end of C++ chapters in the book.

Creating The Universal Machine, was, to put it mildly, a challenge. Early on, while writing proposals to publishers, talking to people with more experience than we then had in developing multimedia, we began to talk about our “Greek chorus.” They warned us gloomily about the inevitable pitfalls and problems we would encounter and advised us to increase our budget. Sure enough, we did encounter many snafus, personnel changes, miscommunications, conflicting priorities, and learning curve issues. It took two and a half years to bring out the first edition of the book with multimedia. A year and a half later we released a second version of the CD-ROM, cleaning up many bugs, adding multimedia material for two chapters which we were not able to include in the first edition, and giving the user more control over the interface.

The initial user interface put the user at the console of a space ship and navigated into one of three galaxies (the three major themes) and thence into star systems or planets (chapters). The analogy of this interface is that exploring outer space is like exploring abstract problem space. As we expected, many beginning students enjoy this interface. However, many sophisticated students, instructors (who make textbook decisions) and our publisher’s marketing staff (alas!) thought it was “juvenile,” unfortunately misleading them about the level of most of the content. So we have developed an alternative interface, presenting themes and chapters in text rather than galactic graphics, with rollovers bringing up summaries of each chapters. The user can choose between either interface at installation and switch between them. The user can also choose to disable sound, have the presentation stop after each screen (by default it advances automatically, which most of our students seem to prefer), skip the opening and credit sequences, etc.

While developing The Universal Machine, the lead author taught CS1 (to a mixed audience of majors and non-majors) at Lehigh University, about 70-80 students each year. From the first year, for which only the manuscript of the book was available, to the second, in which an incomplete version of the multimedia was introduced, the mean final examination scores improved about six points. Improvements were especially notable in coverage of breadth of computing topics, even though coverage of these topics in lecture was fairly light, at most one lecture per breadth chapter, as opposed to two to four lectures per programming chapter. Multimedia has thus allowed us to extend the coverage of the course without sacrificing our curricular goals. In the third year, once the complete first edition was available, the mean final examination scores improved another seven points. This time there was significant improvement in the programming problems, suggesting that integration of Lookout with the multimedia was indeed crucial. We expect further improvement this year, with the introduction of two new chapters (software life cycle and computer architecture) as well as many bug fixes.

Unlike other efforts to bring multimedia to this course (such as Deitel (1994, 1999) or Decker and Hirshfield (1998), the multimedia for The Universal Machine is designed to stand on its own. Typically, it presents expository material with a narrator in both text and audio, then challenges the user with interactive exercises, such as radio button quizzes, point and click, drag and drop, or programming problems. As Sandom, Einstein and Sandom (quoted by Vaughan 1998).note,

If you’re being driven somewhere in the back seat of a car, you may not remember how you to your destination; but if you had been driving the car yourself, chances are you could get there again. Studies indicate that if you’re stimulated with audio, you will have about a 20 percent retention rate, audio-visual is up to 30 percent, and in interactive multimedia presentations where you are really involved, the retention rate is as high as 60 percent.

Our experiences certainly confirm these improvements generally.

A large state university plans to begin using The Universal Machine for distance learning starting in the spring of 2000; we hope to report on preliminary results at the conference.

References

Brookshear, J. Glenn. Computer Science: An Overview. Reading: Addison Wesley Longman Inc: 1994, 1999.

Cooper, Doug & Clancy, Michael. Oh! Pascal! New York: Norton, 1982.

Decker, Rick and Hirshfield, Stuart. The Analytical Engine: An Introduction to Computer Science Using the Internet. Boston: PWS Publishing Company, 1998.

Deitel, H.M., & Deitel, P.J. C++: How to Program. Englewood Cliffs, N.J.: Prentice-Hall Inc, 1994, 1999.

Denning, P. et al. Report of the ACM Task Force on the Core of Computer Science. New York: ACM Press, 1991.

Patterson, D. et al. Computing Unbound: Using Computers in the Arts and Sciences. New York: Norton. 1988,

Pattis, Richard. Karel the Robot. New York: John Wiley Press, 1981, 1995.

Tucker, A.B. et al. Computing Curricula 1991--Report of the ACM/IEEE-Computer Society Joint Curriculum Task Force. New York: ACM Press, 1991.

