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Abstract

The term Semantic Web was coined by Tim Berners-Lee to describe his proposal for \a web of

meaning," as opposed to the \web of links" that currently exists on the Internet. To achieve this vision,

we need to develop languages and tools that enable machine understandable web pages. The SHOE

project, begun in 1995, was one of the �rst e�orts to explore these issues. In this paper, we describe

our experiences developing and using the SHOE language. We begin by describing the unique features

of the World Wide Web and how they must in
uence potential Semantic Web languages. Then we

present SHOE, a language which allows web pages to be annotated with semantics, describe its syntax

and semantics, and discuss our approaches to handling the problems of interoperability in distributed

environments and ontology evolution. Finally, we provide an overview of a suite of tools for the Semantic

Web, and discuss the application of the language and tools to two di�erent domains.

1 Introduction

The World Wide Web is a vast repository of information, but its utility is restricted by limited facilities for
searching and integrating this information. The problem of making sense of the Web has engaged the minds
of numerous researchers from �elds such as databases, arti�cial intelligence, and library science; and these
researchers have applied numerous approaches in an attempt to solve it. Tim Berners-Lee, inventor of the
Web, has coined the term Semantic Web to describe a vision of the future in which the \web of links" is
replaced with a \web of meaning." In this paper, we examine the thesis that the \the Semantic Web can be
achieved if we describe web resources in a language that makes their meaning explicit."

Any language for the Semantic Web must take into account the nature of the Web. Let's consider some
of the issues that arise:

� The Web is distributed. One of the driving factors in the proliferation of the Web is the freedom
from a centralized authority. However, since the Web is the product of many individuals, the lack of
central control presents many challenges for reasoning with its information. First, di�erent communities
will use di�erent vocabularies, resulting in problems of synonymy (when two di�erent words have the
same meaning) and polysemy (when the same word is used with di�erent meanings). Second, the lack of
editorial review or quality control means that each page's reliability must be questioned. An intelligent
web agent simply cannot assume that all of the information it gathers is correct and consistent. There
are quite a number of well-known \web hoaxes" where information was published on the Web with
the intent to amuse or mislead. Furthermore, since there can be no global enforcement of integrity
constraints on the Web, information from di�erent sources may be in con
ict. Some of these con
icts
may be due to philosophical disagreement; di�erent political groups, religious groups, or nationalities
may have fundamental di�erences in opinion that will never be resolved. Any attempt to prevent such
inconsistencies must favor one opinion, but the correctness of the opinion is very much in the \eye of
the beholder."

� The Web is dynamic. The web changes at an incredible pace, much faster than a user or even a
\softbot" web agent can keep up with. While new pages are being added, the content of existing pages
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is changing. Some pages are fairly static, others change on a regular basis and still others change at
unpredictable intervals. These changes may vary in signi�cance: although the addition of punctuation,
correction of spelling errors or reordering of a paragraph does not a�ect the semantic content of a
document, other changes may completely alter meaning, or even remove large amounts of information.
A web agent must assume that its data can be, and often will be, out of date.

The rapid pace of information change on the Internet poses an additional challenge to any attempt
to create standard vocabularies and provide formal semantics. As understanding of a given domain
changes, both the vocabulary may change and the semantics may be re�ned. It is important that such
changes do not adversely alter the meaning of existing content.

� The Web is massive. Recent estimates place the number of indexable web pages at over 2 billion
and this number is expected to double within a year. Even if each page contained only a single piece of
agent-gatherable knowledge, the cumulative database would be large enough to bring most reasoning
systems to their knees. To scale to the size of the ever growing Web, we must either restrict expressivity
of the language or use incomplete reasoning algorithms.

� TheWeb is an open world. A web agent is not free to assume it has gathered all available knowledge;
in fact, in most cases an agent should assume it has gathered rather little available knowledge. Even
the largest search engines have only crawled about 25% of the available pages. However, in order to
deduce more facts, many reasoning systems make the closed-world assumption. That is, they assume
that anything not entailed in the knowledge base is not true. Yet it is clear that the size and evolving
nature of the Web makes it unlikely that any knowledge base attempting to describe it could ever be
complete.

In an attempt to deal with these issues, we have designed a language named SHOE, for Simple HTML
Ontology Extensions. SHOE is one of the �rst languages that allows ontologies to be designed and used
directly on the World Wide Web [25]. In this paper we describe work that in
uenced SHOE, present an
overview of the language, describe its syntax and semantics, and discuss how SHOE addresses the issues
posed in this introduction. We then discuss the problem of implementing a system that uses SHOE, describe
some tools that enhance the language's usability, and discuss the application of these tools to two di�erent
domains. Finally, we provide an overview of related work and some concluding remarks.

2 Background

The success of the Web was made possible by the Hypertext Markup Language (HTML). With HTML,
people can easily author sharable documents and link to related documents that might exist on di�erent
systems. However, HTML is mostly concerned with presentation (i.e., how a document is displayed in a web
browser), and it is di�cult to automatically extract content from an HTML document.

In 1998, the World Wide Web Consortium (W3C) o�cially released the Extensible Markup Language
(XML) [6], a simpli�ed version of the Standard Generalized Markup Language (SGML) [18] for the Web.
XML allows special codes, called tags, to be embedded in a text data stream in order to provide additional
information about the text, such as indicating that a certain word should be emphasized. Usually, each tag
has a corresponding end-tag, with arbitrary text or other tags contained between them. The combination of
a start-tag, end-tag and the data between is called an element. Some tags have additional properties, called
attributes.

Unlike HTML, which precisely de�nes the structure and usage of a speci�c set of elements, XML allows
users to de�ne their own elements and attributes. Thus, users can create a document using content-speci�c
as opposed to presentation-speci�c tags. If a document conforms to basic rules of XML, then it is said to
be well-formed. If a document conforms to a common grammar, as speci�ed by a document type de�nition
(DTD), then is said to be valid. A DTD speci�es valid elements, the contents of these elements, and which
attributes may modify an element. Thus a DTD provides a syntax for an XML document, but the semantics
of a DTD are implicit. That is, the meaning of an element in a DTD is either inferred by a human due
to the name assigned to it, is described in a natural-language comment within the DTD, or is described
in a document separate from the DTD. Humans can then build these semantics into tools that are used to
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interpret or translate the XML documents, but software tools cannot acquire these semantics independently.
Thus, an exchange of XML documents works well if the parties involved have agreed to a DTD beforehand,
but becomes problematic when one wants to search across the entire set of DTDs or to spontaneously
integrate information from multiple sources [17].

A number of approaches including information retrieval, wrappers, semi-structured databases, machine
learning, and natural language processing have been applied to the problem of querying and understanding
HTML and/or XML web pages. However, the lack of semantics in the sources and the lack of common human
knowledge in the tools greatly limits the quality of the techniques. We support an alternative approach:
that authors should explicitly associate semantics with the content they provide.

In order to provide meaning for data, the knowledge must be represented in some way. Knowledge
representation is a sub-�eld of arti�cial intelligence concerned with such matters. The goal of knowledge
representation is to provide structures that allow information to be stored, modi�ed, and reasoned with, all
in an e�cient manner. Over time, numerous knowledge representation languages with di�erent properties
have evolved, from early languages such as KL-ONE [4] and KRL [3], to more recent languages such as
LOOM [26] , Classic [5], and CYC-L [23].

One of the oldest knowledge representation formalisms is semantic networks. A semantic net represents
knowledge as a set of nodes connected by labeled links. In such a representation, meaning is implied by the
way a concept is connected to other concepts. Frame systems are another representation that is isomorphic
to semantic networks. In the terminology of such systems, a frame is a named data object that has a set of
slots, where each slot represents a property or attribute of the object. Slots can have one or more values;
these values may be pointers to other frames.

Advanced semantic networks and frame systems typically include the notion of abstraction, which is
represented using is-a and instance-of links. An is-a link indicates that one class is included within another,
while an instance-of link indicates that a concept is a member of a class. These links have correlations in
basic set theory: is-a is like the subset relation and instance-of is like the element of relation. The collection
of is-a links speci�es a partial order on classes; this order is often called a taxonomy or categorization
hierarchy. The taxonomy can be used to generalize a concept to a more abstract class or to specialize a
class to its more speci�c concepts. As demonstrated by the popularity of Yahoo and the Open Directory,
taxonomies clearly aid users in locating relevant information on the Web.

Many researchers in knowledge representation have become interested in the use of ontologies [14]. The
term ontology, which is borrowed from philosophy, is de�ned as \a particular theory about being or reality."
As such, an ontology provides a particular perspective onto the world, or some part there of. Where a
knowledge representation system speci�es how to represent concepts, an ontology speci�es what concepts to
represent and how they are interrelated. Most researchers agree that an ontology must include a vocabulary
and corresponding de�nitions, but it is di�cult to achieve consensus on a more detailed characterization.
Typically, the vocabulary includes terms for classes and relations, while the de�nitions of these terms may
be informal text, or may be speci�ed using a formal language like predicate logic. The advantage of formal
de�nitions is that they allow a machine to perform much deeper reasoning; the disadvantage is that these
de�nitions are much more di�cult to construct.

Numerous ontologies have been constructed, with varying scopes, levels of detail, and viewpoints. Noy
and Hafner [28] provide a good overview and comparison of some of these projects. One of the more
prominent themes in ontology research is the construction of reusable components. The potential advantages
of such components are that large ontologies can be quickly constructed by assembling and re�ning existing
components, and integration of ontologies is easier when the ontologies share components. One of the most
common ways to achieve reusability is to allow the speci�cation of an inclusion relation that states that one
or more ontologies are included in the new theory [12, 23]. If these relationships are acyclic and treat all
elements of the included ontology as if they were de�ned locally then an ontology can be said to extend its
included ontologies.

One attempt to apply ideas from knowledge representation to the Web is the Resource Description
Framework (RDF) [22]. The RDF data model is essentially a semantic network without inheritance: it
consists of nodes connected by labeled arcs, where the nodes represent web resources and the arcs represent
attributes of these resources. RDF can be embedded in Web documents using an XML serialization syntax,
although its designers emphasize this is only one of many possible representations of the RDF model.

To allow for the creation of controlled, sharable, extensible vocabularies (i.e., ontologies) the RDF working
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group has developed the RDF Schema Speci�cation [7]. This speci�cation de�nes a number of properties that
have speci�c semantics. RDF Schema de�nes properties that are equivalent to the instance-of and is-a links
commonly used in knowledge representation. It also provides properties for describing properties, including
the speci�cation of a property's domain and range, as well as any properties of which it is a subproperty.

Although RDF is an improvement over HTML and XML, it is insu�cient for a Semantic Web language
[17]. In particular, it provides a very small set of semantic primitives and has relatively weak mechanisms
for managing schema evolution. It is desirable that a Semantic Web language provides semantics that allow
inferences beyond what is capable in RDF, but it is also important that the reasoning procedures for the
language can scale to the volumes of data available on the Internet.

The �eld of deductive databases deals with combining inferential capabilities with the scalability of
database systems. The datalog model is commonly used as the basis for describing deductive databases. It
is similar to Prolog in that it consists entirely of Horn clauses, but di�ers in that it does not allow function
symbols and is a strictly declarative language.1 Datalog is based on the relational model but de�nes two
types of relations: extensional database (EDB) relations are those predicates which are physically stored in
the database, while intensional database (IDB) relations are those that can be computed from a set of logical
rules.

Datalog restricts its Horn clauses to be safe, meaning that all of its variables are limited. Datalog de�nes
\limited" as follows: variables are limited if they appear in an ordinary predicate of the rule's body, appear in
an `=' comparison with a constant, or appear in an `=' comparison with another limited variable. Datalog's
Horn clauses may depend on each other recursively. Datalog allows negation in a limited form called strati�ed
negation, which we will not discuss here.

Datalog is relevant to the design of a Semantic Web language because it allows important classes of rules
to be expressed while inference algorithms such as magic sets, which combine the best features of forward
and backward chaining, provide e�cient reasoning. Additionally, it seems reasonable to expect that the
Web will consist of a large EDB and a comparatively small IDB, which is an ideal situation for a deductive
database system.

3 The SHOE Language

SHOE combines features of markup languages, knowledge representation, datalog, and ontologies in an
attempt to address the unique problems of semantics on the Web. It supports knowledge acquisition on the
Web by augmenting it with tags that provide semantic meaning. The basic structure consists of ontologies,
which de�ne rules that guide what kinds of assertions may be made and what kinds of inferences may be
drawn on ground assertions, and instances that make assertions based on those rules. As a knowledge
representation language, SHOE borrows characteristics from both predicate logics and frame systems.

SHOE can be embedded directly in HTML documents or used in XML documents. There are a number
of advantages to using an XML syntax for SHOE. First, although more standard knowledge representation
syntaxes, such as �rst-order logic or S-expressions, could be embedded between a pair of delimiting tags,
Web authors are comfortable with XML-like, tag-based languages. Second, the XML syntax allows SHOE
information to be analyzed and processed using the Document Object Model (DOM), allowing software that
is XML-aware, but not SHOE-aware to still use the information in more limited but nevertheless powerful
ways. For example, some web browsers are able to graphically display the DOM of a document as a tree, and
future browsers will allow users to issue queries that will match structures contained within the tree. The
third reason for using an XML syntax is that SHOE documents can then use the XSLT stylesheet standard
[8] to render SHOE information for human consumption. This is perhaps the most important reason for an
XML syntax, because it can eliminate the redundancy of having a separate set of tags for the human-readable
and machine-readable knowledge.

In this section, we provide a brief description of the syntax of the language followed by a formal model
and a discussion of SHOE's key features. The interested reader can �nd a detailed description of SHOE's
syntax in the SHOE Speci�cation [24].
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3.1 SHOE Ontologies

SHOE uses ontologies to de�ne the valid elements that may be used in describing entities. Each ontology
can reuse other ontologies by extending them. An ontology is stored in an HTML or XML �le and is made
available to document authors and SHOE agents by placing it on a web server. This �le includes tags that
identify the ontology, state which ontologies (if any) are extended, and de�ne the various elements of the
ontology. Figure 1 shows an example of a SHOE ontology.

In SHOE syntax, an ontology appears between the tags <ONTOLOGY ID=id VERSION=version> and
</ONTOLOGY>, and is identi�ed by the combination of the id and version. An ontology can de�ne cate-
gories, relations and other components by including special tags for these purposes.

The tag <DEF-CATEGORY> can be used to make category de�nitions that specify the categories under
which various instances could be classi�ed. Categories may be grouped as subcategories under one or more
supercategories, essentially specifying the is-a relation that is commonly used in semantic networks and
frame systems. The use of categories allows taxonomies to be built from the top down by subdividing
known classes into smaller sets. The example ontology de�nes many categories, including Chair, which is a
subcategory of Faculty.

The tag <DEF-RELATION> (which is closed by a </DEF-RELATION> tag) can be used to make relational
de�nitions that specify the format of n-ary relational claims that may be made by instances regarding
instances and other data. One of the relationships de�ned by the example ontology is advises, which is
between an instance of category Faculty and an instance of category Student. A relation argument can also
be one of four basic types (string, number, date, or boolean value) as is the case with the second argument
of the relationship hasGPA.

SHOE uses inference rules, indicated by the <DEF-INFERENCE> tag, to supply additional axioms. A
SHOE inference rule consists of a set of antecedents (one or more subclauses describing claims that entities
might make) and a set of consequents (consisting of one or more subclauses describing a claim that may be
inferred if all claims in the body are made). The <INF-IF> and <INF-THEN> tags indicate the antecedents
and consequents of the inference, respectively. There are three types of inference subclauses: category,
relation and comparison. The arguments of any subclause may be a constant or a variable, where variables
are indicated by the keyword VAR. Constants must be matched exactly and variables of the same name must
bind to the same value. The ontology in the example includes a rule stating that the head of a department
is a chair.

As is common in many ontology e�orts, such as Ontolingua and Cyc, SHOE ontologies build on or extend
other ontologies, forming a lattice with the most general ontologies at the top and the more speci�c ones
at the bottom. Ontology extension is expressed in SHOE with the <USE-ONTOLOGY> tag, which indicates
the id and version number of an ontology that is extended. An optional URL attribute allows systems to
locate the ontology if needed and a PREFIX attribute is used to establish a short local identi�er for the
ontology. When an ontology refers to an element from an extended ontology, this pre�x and a period is
appended before the element's name. In this way, references are guaranteed to be unambiguous, even when
two ontologies use the same term to mean di�erent things. By chaining the pre�xes, one can specify a path
through the extended ontologies to an element whose de�nition is given in a more general ontology.

Sometimes an ontology may need to use a term from another ontology, but a di�erent label may be more
useful within its context. The <DEF-RENAME> tag allows the ontology to specify a local name for a concept
from any extended ontology. This local name must be unique within the scope of the ontology in which the
rename appears. Renaming allows domain speci�c ontologies to use the vocabulary that is appropriate for
the domain, while maintaining interoperability with other domains.

3.2 SHOE Instances

Unlike RDF, SHOE makes a distinction between what can be said in an ontology and what can be said on
an arbitrary web page. Ordinary web pages declare one or more instances that represent SHOE entities,
and each instance describes itself or other instances using categories and relations. An example of a SHOE
instance is shown in Figure 2. The syntax for instances includes an <INSTANCE> element that has an
attribute for a KEY that uniquely identi�es the instance. We recommend that the URL of the web page be
used as this key, since it is guaranteed to identify only a single resource. An instance commits to a particular
ontology by means of the <USE-ONTOLOGY> tag, which has the same function as the identically named
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element used within ontologies. To prevent ambiguity in the declarations, ontology components are referred
to using the pre�xing mechanism described earlier. The use of common ontologies makes it possible to issue
a single logical query to a set of data sources and enables the integration of related domains. Additionally,
by specifying ontologies the content author indicates exactly what meaning he associates with his claims,
and does not need to worry that an arbitrary de�nition made in some other ontology will alter this meaning.

An instance contains ground category claims and relation claims. A category claim is speci�ed with the
<CATEGORY NAME=y FOR=x> tag, and says that the instance claims that an instance x is an element
of a category y. If the FOR attribute is omitted, then the category claim is about the instance making
the claim. In the example, the instance http://univ.edu/jane/ claims that http://univ.edu/jane/ is a Chair and
http://univ.edu/john/ is a Student.

A relational claim is enclosed by the <RELATION NAME=foo> and </RELATION> tags, and says that the
instance claims that an n-ary relation foo exists between some n number of appropriately typed arguments
consisting of data or instances. In the example, the instance http://univ.edu/jane/ claims that there exists the
relation advises between http://univ.edu/jane/ and her student http://univ.edu/john/ and that that the name of
http://univ.edu/jane/ is Jane Smith.

3.3 SHOE's Semantics

In order to describe the semantics of SHOE, we will extend a standard model-theoretic approach for de�nite
logic with mechanisms to handle distributed ontologies. For simplicity, this model intentionally omits some
minor features of the SHOE language.

We de�ne an ontology O to be a tuple < V;A > where V is the vocabulary and A is the set of axioms
that govern the theory. Formally, V is a set of predicate symbols, each with some arity � 0 and distinct
from symbols in other ontologies,2 while A is a set of de�nite program clauses that have the standard logical
semantics.3 We now discuss the contents of V and A, based upon the components that are de�ned in the
ontology:

A <USE-ONTOLOGY> statement adds the vocabulary and axioms of the speci�ed ontology to the current
ontology. Due to the assumption that names must be unique, name con
icts can be ignored.

A <DEF-RELATION> statement adds a symbol to the vocabulary and for each argument type that is a
category, adds an axiom that states that an instance in that argument must be a member of the category.
If the tag speci�es a name R and has n arguments then there is an n-ary predicate symbol R in V . If the
type of the ith argument is a category C, then [R(x1; :::; xi; :::xn)! C(xi)] 2 A. This rule is a consequence
of SHOE's open-world policy: since there is no way to know that a given object in a relation claim is not
a member of a category appropriate for that relation, it is better to assume that this information is yet
undiscovered than it is to assume that the relation is in error. However, when arguments are basic data
types, type checking is performed to validate the relation. Basic data types are treated di�erently because
they are di�erent: they have syntax which can be checked in ways that category types cannot, which allows
us to impose stringent input-time type checking on basic data types.

A <DEF-CATEGORY> adds a unary predicate symbol to the vocabulary and possibly a set of rules
indicating membership. If the name is C, then C 2 V . For each super-category Pi speci�ed, [C(x) !
Pi(x)] 2 A.

A <DEF-INFERENCE> adds one or more axioms to the theory. If there is a single clause in the <INF-

THEN>, then there is one axiom with a conjunction of the <INF-IF> clauses as the antecedent and the
<INF-THEN> clause as the consequent. If there are n clauses in the <INF-THEN> then there are n axioms,
each of which has one of the clauses as the consequent and has the same antecedent as above.

A <DEF-RENAME> provides an alias for a non-logical symbol. It is meant as a convenience for users
and can be implemented using a simple pre-processing step that translates the alias to the original, unique
non-logical symbol. Therefore, it can be ignored for the logical theory.

A formula F is well-formed with respect to O if 1) F is an atom of the form p(t1; :::; tn) where p is a
n-ary predicate symbol such that p 2 V or 2) F is a Horn clause where each atom is of such a form. An
ontology is well-formed if every axiom in the ontology is well-formed with respect to the ontology.

Now we turn our attention to data sources, such as one or more web pages, that use an ontology to make
relation and category claims. Let S =< OS ; DS > be such a data source, where OS =< VS ; AS > is the
ontology and DS is the set of claims. S is well-formed if OS is well-formed and each element of DS is a
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ground atom that is well-formed with respect to OS . The terms of these ground atoms are constants and
can be instance keys or values of a SHOE data type.

We wish to be able to describe the meaning of a given data source, but it is important to realize that
on the Web, the same data could have di�erent meanings for di�erent people. An agent may be able to
draw useful inferences from a data source without necessarily agreeing with the ontology intended by the
data's author. A common case would be when an agent wishes to integrate information that depends on two
overlapping but still distinct ontologies. Which set of rules should the agent use to reason about this data?
There are many possible answers, and we propose that the agent should be free to choose. To describe this
notion, we de�ne a perspective P =< S;O > as a data source S =< OS ; DS > viewed in the context of an
ontology O =< V;A >. If O = OS then P is the intended perspective, otherwise it is an alternate perspective.
If there are elements of DS that are not well-formed with respect to O, these elements are considered to be
irrelevant to the perspective. If WS is the subset of DS that is well-formed with respect to O, then P is said
to result in a de�nite logic theory T =WS [ A.

Finally, we can describe the semantics of a perspective P using a model theoretic approach. An inter-
pretation of the perspective consists of a domain, the assignment of each constant in S to an element of
the domain, and an assignment of each element in V to a relation from the domain. A model of P is an
interpretation such that every formula in its theory T is true with respect to it. We de�ne a query on P as a
Horn clause with no consequent that has the semantics typically assigned to such queries for a de�nite logic
program T .

We also introduce one additional piece of terminology that will be used later in the paper. If every ground
atomic logical consequence of perspective P is also a ground atomic logical consequence of perspective P 0

then P 0 is said to semantically subsume P . In such cases, any query issued against perspective P 0 will have
at least the same answers as if the query was issued against P . If two perspectives semantically subsume
each other, then they are said to be equivalent.

3.4 Interoperability in Distributed Environments

SHOE was designed speci�cally with the needs of distributed internet agents in mind. A key problem in
distributed systems is interoperability; SHOE attempts to maximize interoperability through the use of
shared ontologies, pre�xed naming, prevention of contradictions, and locality of inference rules. This section
discusses each of these in turn.

Figure 3 shows how the ontology extension and renaming features of the language promote interoper-
ability. When two ontologies need to refer to a common concept, they should both extend an ontology in
which that concept is de�ned. In this way, consistent de�nitions can be assigned to each concept, while still
allowing communities to customize ontologies to include de�nitions and rules of their own for specialized
areas of knowledge. These methods allow the creation of high-level, abstract unifying ontologies extended
by often-revised custom ontologies for specialized, new areas of knowledge. There is a trade-o� between
trust of sources far down in the tree (due to their 
eeting nature) and the ease of which such sources can be
modi�ed on-the-
y to accommodate new important functions (due to their 
eeting nature). In a dynamic
environment, an ontology too stable will be too in
exible; but of course an ontology too 
exible will be too
unstable. SHOE attempts to strike a balance using simple economies of distribution.

The problems of synonymy and polysemy are handled by the extension mechanism and <DEF-RENAME>

tag. Using this tag, ontologies can create aliases for terms, so that domain-speci�c vocabularies can be used.
For example, in Figure 3, the term DeptHead in univ-ont2 means the same thing as Chair in univ-ont due to
a <DEF-RENAME> tag in univ-ont2. Although the extension and aliasing mechanisms solve the problem of
synonymy of terms, the same terms can still be used with di�erent meanings in di�erent ontologies. This is
not undesirable, a term should not be restricted for use in one domain simply because it was �rst used in
a particular ontology. As shown in Figure 3, in SHOE di�erent ontologies may also use the same term to
de�ne a di�erent concept. Here, the term Chair means di�erent things in univ-ont and furn-ont because the
categories have di�erent ancestors. To resolve any ambiguity that may arise, ontological elements are always
referenced using special pre�xes that de�ne unique paths to their respective enclosing ontologies. Instances
and ontologies that reference other ontologies must include statements identifying which ontologies are used
and each ontology is assigned a pre�x which is unique within that scope. All references to elements from
that ontology must include this pre�x, thereby uniquely identifying which de�nition is desired.
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Recall that each SHOE instance must be assigned a key, and that this key is often the URL of the web
page describing the instance. In SHOE, it is assumed that each key identi�es exactly one entity, but no
assumptions are made about whether two distinct keys might identify the same entity. This is because many
di�erent URLs could be used to refer to the same page (due to the facts that a single host can have multiple
domain names and operating systems may allow many di�erent paths to the same �le). To solve these
problems in a practical setting, a canonical form can be chosen for the URL; an example rule might be that
the full path to the �le should be speci�ed, without operating systems shortcuts such as '~ ' for a user's home
directory. Even then, there are still problems with multiple keys possibly referring to the same conceptual
object. At any rate, this solution ensures that the system will only interpret two objects as being equivalent
when they truly are equivalent. Ensuring that two object references are matched when they conceptually
refer to the same object is an open problem.

In distributed systems, a contradiction cannot be handled by simply untelling the most recent assertion,
otherwise the system would give preference to those authors who provided their information �rst, regardless of
whether it was true, false, or a matter of opinion. Rather than delve into complex procedures for maintaining
consistency, we chose to keep SHOE easy to understand and implement. Therefore, we have carefully designed
the language to eliminate the possibility of contradictions between agent assertions. SHOE does this in four
ways:

1. SHOE only permits assertions, not retractions.

2. SHOE does not permit logical negation.

3. SHOE does not have single-valued relations, that is, relational sets which may have only one value (or
some �xed number of values).

4. SHOE does not permit the speci�cation of disjoint classes.

Although this restricts the expressive power of the language, in our practical experience, we have not
yet found it to be a signi�cant problem. It should be noted that SHOE does not prevent \contradic-
tions" that are not logically inconsistent. If claimant A says father(Mark;Katherine) and claimant B
says father(Katherine;Mark), the apparent contradiction is because one claimant is misusing the father
relation. However, this does not change the fact that A and B made those claims.

A similar problem may occur in an ontology where an inference rule derives a conclusion whose inter-
pretation would be inconsistent with another ontology. Therefore, it is the ontology designer's responsibility
to make sure that the ontology is correct and that it is consistent with all ontologies that it extends. It
is expected that ontologies which result in erroneous conclusions will be avoided by users, and will thus be
weeded out by natural selection.

Yet another problem with distributed environments is the potential interference of rules created by other
parties: a rule created by one individual could have unwanted side-e�ects for other individuals. For these
reasons, SHOE only allows rules to be de�ned in ontologies, and the only rules that could apply to a given
claim are those which are de�ned in the ontologies used by the instance making claim. Since rules can
only be expressed in ontologies, the process of determining when a rule is applicable is simpli�ed, and page
authors can use this to control the side-e�ects of their claims. If a user wishes to view an instance in a
di�erent context or use it in ways originally unintended by the author, then the user can use an alternate
perspective for the instance that is based on a di�erent, but compatible ontology.

3.5 Ontology Evolution

The Web's changing nature means that ontologies will have to be frequently changed to keep up with
current knowledge and usage. Since physically revising an ontology can invalidate objects that reference it
for vocabulary and de�nitions, it is useful to think of a revision as a new ontology that is a copy of the
original ontology with subsequent modi�cations. In fact, this is exactly what SHOE does: each version of
an ontology is a separate Web resource and is assigned a unique version number, while all references to an
ontology must denote a speci�c version. How then, is a revision di�erent from an ontology with a di�erent
identi�er? The answer is that a revision can specify that it is backwardly-compatible with earlier version
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(using the backward-compatible-with attribute of the ontology), which allows interoperability between sources
that use di�erent versions of an ontology.

Before we de�ne backward-compatibility, we will �rst characterize and compare di�erent types of revisions
using the formal model developed in Section 3.3. To be succinct, we will only discuss revisions that add
or remove components; the modi�cation of a component can be thought of as a removal followed by an
addition. In the rest of this section, O will refer to the original ontology, O0 to its revision, P and P 0 to the
perspectives formed by these respective ontologies and an arbitrary source S =< O;DS >, and T and T 0 to
the respective theories for these perspectives.

If a revisionO0 adds an arbitrary rule to ontologyO, then for any source S, the perspective P 0 semantically
subsumes P . Since the revision only adds a sentence to the corresponding theory T 0 � T , and since �rst-order
logic is monotonic any logical consequence of T is also a logical consequence of T 0. Thus, when a revision
that adds rules provides an alternate perspective of a legacy data source, there may be additional answers
that were not originally intended by the author of the data. Similar reasoning is used to ascertain that if
the revision removes rules, then P semantically subsumes P 0.

If O0 consists of the removal of categories or relations from O, then P semantically subsumes P 0. This is
because there may be some atoms in S that were well-formed w.r.t. O that are not well-formed w.r.t. O0.
Informally, if categories or relations are removed, predicate symbols are removed from the vocabulary. If
the ground atoms of S depended on these symbols for well-formedness then when the symbols are removed
the sentences are no longer well-formed. Thus, T 0 � T and due to the monotonicity of de�nite logic, every
logical consequence of T 0 is a logical consequence of T . Revisions of this type may mean that using the
revised ontology to form a perspective may result in fewer answers to a given query.

Finally, if the revision only adds categories or relations, the corresponding perspective P 0 is equivalent to
P . Since T 0 � T it is easy to show that P 0 semantically subsumes P . The proof of the other direction depends
on the nature of the axioms added: R(x1; :::; xi; :::xn)! C(xi) for relations and C(x) ! Pi(x) for categories.
It also relies on the fact that due to the de�nitions of categories and relations, the predicate of each antecedent
is a symbol added by the new ontology and must be distinct from symbols in any other ontology. Therefore
any atoms formed from these predicates are not well-formed with respect to any preexisting ontology. Thus,
there can be no such atoms in S, since S must be well-formed with respect to some ontology 6= O0. Since
the antecedents cannot be ful�lled, the rules will have no new logical consequences that are ground atoms.
Since P semantically subsumes P 0 and vice versa, P and P 0 are equivalent. This result indicates that we
can safely add relations or categories to the revision, and maintain the same perspective on all legacy data
sources.

We can now de�ne backward-compatibility: an ontology revision O0 can be said to be backward-
compatible with an ontology O if for any data source S =< O;DS >, the perspective P 0 =< S;O0 >

semantically subsumes the perspective P =< S;O >. Put simply, if every logical consequence of the original
is also a consequence of the revision, then the revision is backward-compatible. By our analysis above, if a
revision only adds categories, relations, or rules then it is backward compatible with the original, while if it
removes any of these components then it is not backward compatible.

With this notion of backward compatibility, agents can assume with some degree of con�dence that a
perspective that uses the backward compatible revision will not alter the original meaning of the data source,
but instead supplement it with information that was originally implicit. Agents that don't wish to assume
anything, may still access the original version because it still exists at the original URL. However, it should
be noted that this versioning mechanism is dependent on the compliance of the ontology designers. Since
an ontology is merely a �le on a web server, there is nothing to prevent its author from making changes to
an existing ontology version. This is the price we pay for have having a system that is 
exible enough to
cope with the needs of diverse user communities while being able to change rapidly. However, we presume
that users will gravitate towards ontologies from sources that they can trust and ontologies that cannot be
trusted will become obsolete.

Although, ideally integration in SHOE is a byproduct of ontology extension, a distributed environment
in which ontologies are rapidly changing is not always conducive to this. Even when ontology designers have
the best intentions, a very specialized concept may be simultaneously de�ned by two new ontologies. To
handle such situations, periodic ontology integration must occur. Ontologies can be integrated using a new
ontology that maps the related concepts using inference rules, by revising the relevant ontologies to map to
each other, or by creating a new more general ontology which de�nes the common concepts, and revising
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the relevant ontologies to extend the new ontology. We discuss each of these solutions in more detail in [15].

3.6 Scalability

The scalability of a knowledge representation depends on the computational complexity of the inferences that
it sanctions. We intentionally omitted from SHOE features such as disjunction and negation that typically
make knowledge representation systems intractable. Since SHOE is essentially a set of Horn clauses, a naive
forward-chaining inference algorithm can be executed in polynomial time and space in the worst case. Of
course, the expected size of an extensional database built from the Web makes this an undesirable option.

We carefully chose SHOE's set of semantic primitives so that it could be reduced to datalog, thus allowing
the use of optimized algorithms such as magic sets [33]. The semantics of SHOE categories can be easily
described using a datalog rule. For example, category membership such as the fact that a Person is a Mammal

may be expressed by using unary predicates and a rule of the form:

Mammal(X) :- Person(x)

Since SHOE's inferential rules are basically Horn clauses, they also map directly to datalog. Furthermore,
SHOE's more restrictive variable join rule ensures that all SHOE inference rules are safe. Thus, SHOE is
equivalent to safe datalog without negation.

Obviously, SHOE systems can bene�t from the deductive database research, but the massive size of the
resulting KBs may at times yield unacceptable performance. Therefore SHOE has a modular design that
allows systems to cleanly provide di�ering degrees of inferential capability. For example, a system may choose
only to implement transitive category membership, or may choose to implement no inference at all, thus
providing only access to the extensional database. Although such systems might be incomplete reasoners
with respect to the intended perspective (see section 3.3), they can be complete reasoners with respect to
an alternate perspective (i.e., one that mirrors the intended perspective but omits all inference rules and/or
category de�nitions).

4 Implementation

In the previous section we described the semantics of SHOE and discussed its treatment of some of the
speci�c challenges for a Semantic Web language. In this section we describe a suite of tools and methods for
using the language in practice, and describe its application to the domains of computer science departments
and food safety.

Although there are many possible ways to use the SHOE language, the simplest is one that parallels
the way the Web works today. There are numerous tools that can be used to produce content, and this
content is published on the Web by making it accessible via a web server. A web-crawler can then gather
relevant pages and store it in a repository, which can then be queried by some type of user interface. The
key component of a SHOE system is that both the content and the ontologies which provide semantics for
the content are published on the Web. Since this information is structured and has semantics, the repository
should be a knowledge base rather than an information retrieval system. This basic architecture is shown in
Figure 4.

The �rst step in using SHOE is to locate or design an appropriate ontology. To assist in this process, there
should be a central repository of ontologies. A simple repository could be a set of web pages that categorize
ontologies, while a more complex repository may associate a number of characteristics with each ontology
so that speci�c searches can be issued. A web-based system that uses the later approach is described in [34].
If it is determined that no suitable ontology is available, any newly created ontology should always extend
available ontologies that contain related concepts.

The process of adding semantic tags to a web page is called annotation. There are a number of tools
that can be used in this process, from simple text editors, to GUI-based editors, to semi- or fully-automated
techniques. Text editors have the advantage that they are common place, but require that users become
familiar with the syntax of SHOE.We have developed a GUI editor for SHOE called the Knowledge Annotator
that allows the user to create markup by selecting from lists and �lling in forms. However, there are cases
where the user may want to generate markup that corresponds to information from large lists or tables
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in pre-existing web pages. For such situations, our Running SHOE tool can be used to quickly create a
wrapper for an existing document by specifying tokens that indicate records and �elds, and then mapping
these records and �elds to classes and relations from some ontology. This tool can be used to generate a
large set of semantic markup from regular documents in minutes. Other approaches to generating markup
can include machine learning, information extraction, and, in limited domains, natural language processing
techniques.

Once the necessary content and ontologies documents are published on the Web, they can be harvested
by a web-crawler. Expos�e, the SHOE web-crawler, searches for web pages with SHOE markup and stores
the information in a knowledge base. Whenever a page commits to an ontology unknown to the system,
this ontology is also retrieved and stored in the knowledge base. The biggest drawback to a web-crawler
approach is that the information is only as recent as the last time the crawler visited the source web page.
In certain applications, such as comparison shopping, this time period may be unacceptable. An interesting
direction for future research is the development of focused crawlers that seek answers to particular questions
in real-time.

As mentioned above, the web-crawler needs a knowledge base in which to store the results of its e�orts.
A knowledge base provides permanent storage for information and the ability to use knowledge to draw
inferences from that which was explicitly stored in it. An important trade-o� for candidate knowledge base
systems is the degree to which it can make inferences sanctioned by the language (completeness) and the
response time to queries (performance). We believe that users of SHOE systems should be able to specify
their preferences with regard to this scale. Thus, many di�erent knowledge base systems could be used for
SHOE, with the appropriate tradeo�s in mind.

At the completeness end of the scale sit systems such as XSB [31], a logic programming and deductive
database system. XSB is more expressive than datalog and can thus be used as a complete reasoner for
SHOE. At the performance end of the scale sit relational database management systems (RDBMS), which
have been traditionally used for querying enormous quantities of data. However, a relational database
provides no automated inferential capability, and thus can only answer queries using the information that
was explicitly stored. In between the two extremes, sit systems such as Parka [11, 32], a high-performance
knowledge representation system whose roots lie in semantic networks and frame systems, but which makes
use of certain database technology such as secondary storage and indexing. Parka has better inferential
capabilities than a RDBMS, but less than XSB, while being faster than XSB but slower than an RDBMS.

Once information is stored in a knowledge base, it can be queried by a variety of front ends. SHOE
Search [16] is a generic tool gives users a new way to browse the web by allowing them to submit structured
queries and open documents by clicking on the URLs in the results. The user �rst chooses an ontology
against which the query should be issued and then chooses the class of the desired object from a hierarchical
list. After the system presents a list of all properties that could apply to that object and the user has typed
in desired values for one or more of these properties, the user issues a query and is presented with a set of
results in a tabular form. If the user double-clicks on a binding that is a URL, then the corresponding web
page will be opened in a new window of the user's web browser.

In order to evaluate the tools and techniques for SHOE, we have used them in two di�erent domains.
The �rst domain is that of computer science departments. We started by creating a simple computer
science department ontology4 by hand. The scope of this ontology includes departments, faculty, students,
publications, courses, and research, for a total of 43 categories and 25 relations. The next step was to annotate
a set of web pages (i.e., add SHOE semantic markup to them). Every member of the Parallel Understanding
Systems (PLUS) Group marked up their own web pages. Although most members used the Knowledge
Annotator, a few added the tags using their favorite text editors. To get even more SHOE information, we
used the Running SHOE tool on the faculty, users, courses and research groups web pages from the web sites
of various computer science departments. Expos�e was used to acquire the SHOE knowledge from the web
pages. This resulted in a total of 38,159 assertions, which were stored in both Parka and XSB. Although
the KB for this domain is very small when compared to the scale of the entire Web, the initial results are
promising. For example, a query of the form member(http://www.cs.umd.edu, x) ^ instance(Faculty, x) takes
Parka less than 250 milliseconds to answer.

The possible bene�ts of a system such as this one are numerous. A prospective student could use it
to inquire about universities that o�ered a particular class or performed research in certain areas. Or a
researcher could design an agent to search for articles on a particular subject, whose authors are members
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of a particular set of institutions, and were published during some desired time interval. Additionally,
SHOE can combine the information contained in multiple sources to answer a single query. For example, to
answer the query \Find all papers about ontologies written by authors who are faculty members at public
universities in the state of Maryland" one would need information from university home pages, faculty listing
pages, and publication pages for individual faculty members. Such a query would be impossible for current
search engines because they rank each page based upon how many of the query terms it contains.

The SHOE technology was also applied to the domain of food safety. The Joint Institute for Food Safety
and Applied Nutrition (JIFSAN), a partnership between the Food and Drug Administration (FDA) and the
University of Maryland, is working to expand the knowledge and resources available to support risk analysis
in the food safety area. One of their goals is to develop a website that will serve as a clearinghouse of
information about food safety risks. This website must serve a diverse group of users, including researchers,
policy makers, risk assessors, and the general public, and thus must be able to respond to queries where
terminology, complexity and speci�city may vary greatly. This is not possible with keyword based indices,
but can be achieved using SHOE.

The initial TSE ontology was 
eshed out in a series of meetings that included members of JIFSAN and
a knowledge engineer. The ontology focused on the three main concerns for TSE Risks: source material,
processing, and end-product use. Currently, the ontology has 73 categories and 88 relations.5 Following
the creation of the initial ontology, the team annotated web pages. There are two types of pages that this
system uses. Since the Web currently has little information on animal material processing, we created a set
of pages describing many important source materials, processes and products. The second set of pages are
existing TSE pages that provide general descriptions of the disease, make recommendations or regulations,
and present experimental results. Early annotations were di�cult because the original ontology did not have
all of the concepts that were needed. When the initial set of pages was completed, we ran Expos�e, using
Parka as the knowledge base system. Since the TSE Ontology currently does not de�ne inference rules, Parka
is able to provide a complete reasoning capability for it. The Parka KB can be queried using SHOE Search
as discussed earlier, but JIFSAN also wanted a special purpose tool to help users visualize and understand
the processing of animal materials.

To accommodate this, we built the TSE Path Analyzer, a graphical tool that can be used to analyze how
source materials end up in products that are eventually consumed by humans or animals. This information
is extremely valuable when trying to determine the risk of contamination given the chance that a source
material is contaminated. It is expected that information on each step in the process will be provided
on di�erent web sites (since many steps are performed by di�erent companies), thus using a language like
SHOE is essential to integrating this information. The TSE Path Analyzer allows the user to pick a source,
process and/or end product from lists that are derived from the taxonomies of the ontology. The system
then displays all possible pathways that match the query. Since these displays are created dynamically based
on the semantic information in the SHOE web pages, they are kept current automatically, even when the
SHOE information on some remote site is changed.

5 Related Work

In recent years, there has been work to use ontologies to help machines process and understand Web doc-
uments. Fensel et al. [13] have developed Ontobroker, which proposes minor extensions to the common
anchor tag in HTML. The theoretical basis for Ontobroker is frame logic, a superset of Horn logic that treats
ontology objects as �rst class citizens. However, this approach depends on a centralized broker, and as a
result, the web pages cannot specify that they reference a particular ontology, and agents from outside the
community cannot discover the ontology information. Kent [20] has designed the Ontology Markup Lan-
guage (OML) and the Conceptual Knowledge Markup Language (CKML), which were in
uenced by SHOE,
but are based on the theories of formal concept analysis and information 
ow. However, the complexity of
these theories make it unlikely that this language will be accepted by the majority of existing web developers
and/or users. The Ontology Interchange Language (OIL) [10] is a new web ontology language that extends
RDF and RDF Schema with description logic capabilities. Jannink et al. [19] suggest a di�erent approach
from creating web ontology languages and annotating pages; they propose that an ontology should be built
for each data source, and generalization is accomplished by integrating these data sources. In this way, the
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data dictates the structure of the ontology rather than the other way around.
Querying the Web is such an important problem that a diverse body of research has be directed towards

it. Some projects focus on creating query languages for the Web [1, 21], but these approaches are limited to
queries concerning the HTML structure of the document and the hypertext links. They also rely on index
servers such as AltaVista or Lycos to search for words or phrases, and thus su�er from the limitations of
keyword search. Work on semistructured databases [27] is of great signi�cance to querying and processing
XML, but the semistructured model su�ers the same interoperability problems as XML. Even techniques
such as data guides will be of little use when integrating information developed by di�erent communities
in di�erent contexts. Another approach involves mediators (or wrappers), custom software that serves as
an interface between middleware and a data source [35, 29, 30]. When applied to the Web, wrappers allow
users to query a page's contents as if it was a database. However, the heterogeneity of the Web requires that
a multitude of custom wrappers must be developed, and it is possible that important relationships cannot
be extracted from the text based solely on the structure of the document. Semi-automatic generation of
wrappers [2] is a promising approach to overcoming the �rst problem, but is limited to data that has a
recognizable structure.

In order to avoid the overhead of annotating pages or writing wrappers, some researchers have proposed
machine learning techniques. Craven et al. [9] have trained a system to classify web pages and extract
relations from them in accordance with a simple ontology. However, this approach is constrained by the
time-consuming task of developing a training set and has di�culty in classifying certain kinds of pages due
to the lack of similarities between pages in the same class.

6 Conclusion

In this paper, we have described many of the challenges that must be addressed by research on the Semantic
Web and have described SHOE, one of the �rst languages to explicitly address these problems. SHOE
provides interoperability in distributed environments through the use of extensible, shared ontologies, the
avoidance of contradictions, and localization of inference rules. It handles the changing nature of the Web
with an ontology versioning scheme that supports backward-compatibility. It takes steps in the direction of
scalability by limiting expressivity and allowing for di�erent levels on inferential support. Finally, since the
Web is an \open-world," SHOE does not allow conclusions to be drawn from lack of information.

To demonstrate SHOE's features, we have described applications that show the use of SHOE. We've
developed a freely available ontology for computer science pages, and we've also worked with biological
epidemiologists to design an ontology for a key food safety area. These applications show that SHOE can
exist on the web, and that tools using SHOE can be built and used.

Although we believe SHOE is good language that has practical use, we do not mean to suggest that it
solves all of the problems of the Semantic Web. We are at the beginning of a new and exciting research �eld
and there is still much work to do. Further research must be performed to determine how SHOE's method
for interoperability scales to the thousands of ontologies that will be created on the Web and the problem
of ontology evolution must be studied more closely. Additionally, the appropriate level of expressivity for a
semantic web language must be explored. For example, are negation and cardinality constraints necessary,
and if so, how can they be used in a decentralized system such as the Web? Finally, more user-friendly tools
need to be developed, so that use of the semantic web can become routine for the layperson.

As early \pioneers," we hope that our experience with SHOE can inspire and inform others. A key
goal of this project is to raise the issues that are crucial to the development of the Semantic Web and
encourage others to explore them. To this end, we have made SHOE freely available on the Web, includ-
ing the Java libraries and our prototype tools. Interested readers are urged to explore our web pages at
http://www.cs.umd.edu/projects/plus/SHOE/ for the full details of the language and the applications.
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Notes

1Prolog is not strictly declarative because the order of the rules determines how the system processes
them.

2In actuality, SHOE has a separate namespace for each ontology, but one can assume that the symbols
are unique because it is always possible to apply a renaming that appends a unique ontology identi�er to
each symbol.

3A de�nite program clause is a Horn clause that has at least one antecedent and exactly one consequent.

4This ontology is located at http://www.cs.umd.edu/projects/plus/SHOE/onts/cs1.0.html

5 Those interested in the details of the ontology can view it at
http://www.cs.umd.edu/projects/plus/SHOE/onts/tseont.html
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<!-- Declare an ontology called "university-ont". -->

<ONTOLOGY ID="university-ont" VERSION="1.0">

<!-- Borrow some elements from an existing ontology, prefixed with a "g." -->

<USE-ONTOLOGY ID="general-ont" VERSION="1.0" PREFIX="g"

URL="http://www.ontology.org/general1.0.html">

<!-- Create local aliases for some terms -->

<DEF-RENAME FROM="g.Person" TO="Person">

<DEF-RENAME FROM="g.Organization" TO="Organization">

<DEF-RENAME FROM="g.name" TO="name">

<!-- Define some categories and subcategory relationships -->

<DEF-CATEGORY NAME="Faculty" ISA="Person">

<DEF-CATEGORY NAME="Student" ISA="Person">

<DEF-CATEGORY NAME="Chair" ISA="Faculty">

<DEF-CATEGORY NAME="Department" ISA="Organization">

<!-- Define some relations; these examples are binary, but relations can be n-ary too -->

<DEF-RELATION NAME="advises">

<DEF-ARG POS="1" TYPE="Faculty">

<DEF-ARG POS="2" TYPE="Student">

</DEF-RELATION>

<DEF-RELATION "hasGPA">

<DEF-ARG POS="1" TYPE="Student">

<DEF-ARG POS="2" TYPE=".NUMBER">

</DEF-RELATION>

<!-- Define a rule that states that the head of a Department is a Chair -->

<DEF-INFERENCE>

<INF-IF>

<RELATION NAME="g.headOf">

<ARG POS="1" VALUE="x" USAGE="VAR">

<ARG POS="2" VALUE="y" USAGE="VAR">

</RELATION>

<CATEGORY NAME="Department" FOR="y" USAGE="VAR">

</INF-IF>

<INF-THEN>

<CATEGORY NAME="Chair" FOR="x" USAGE="VAR">

</INF-THEN>

</DEF-INFERENCE>

</ONTOLOGY>

Figure 1: An example ontology.
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<INSTANCE KEY="http://univ.edu/jane/">

<!-- Use the semantics from the ontology "university-ont", prefixed with a "u." -->

<USE-ONTOLOGY ID="university-ont" VERSION="1.0" PREFIX="u"

URL="http://www.ontology.org/univ1.0.html">

<!-- Claim some categories for this instance and others. -->

<CATEGORY NAME="u.Chair">

<CATEGORY NAME="u.Student" FOR="http://univ.edu/john/">

<!-- Claim some properties and relationships -->

<RELATION NAME="u.name">

<ARG POS="TO" VALUE="Jane Smith">

</RELATION>

<RELATION NAME="u.advises">

<ARG POS="TO" VALUE="http://univ.edu/john/">

</RELATION>

</INSTANCE>

Figure 2: An example instance.
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Figure 3: Interoperability is based on shared ontologies.
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Figure 4: The SHOE architecture.
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